4,099 research outputs found

    Cross-Correlation Studies between CMB Temperature Anisotropies and 21 cm Fluctuations

    Get PDF
    During the transition from a neutral to a fully reionized universe, scattering of cosmic microwave background (CMB) photons via free-electrons leads to a new anisotropy contribution to the temperature distribution. If the reionization process is inhomogeneous and patchy, the era of reionization is also visible via brightness temperature fluctuations in the redshifted 21 cm line emission from neutral Hydrogen. Since regions containing electrons and neutral Hydrogen are expected to trace the same underlying density field, the two are (anti) correlated and this is expected to be reflected in the anisotropy maps via a correlation between arcminute-scale CMB temperature and the 21 cm background. In terms of the angular cross-power spectrum, unfortunately, this correlation is insignificant due to a geometric cancellation associated with second order CMB anisotropies. The same cross-correlation between ionized and neutral regions, however, can be studied using a bispectrum involving large scale velocity field of ionized regions from the Doppler effect, arcminute scale CMB anisotropies during reionization, and the 21 cm background. While the geometric cancellation is partly avoided, the signal-to-noise ratio related to this bispectrum is reduced due to the large cosmic variance related to velocity fluctuations traced by the Doppler effect. Unless the velocity field during reionization can be independently established, it is unlikely that the correlation information related to the relative distribution of ionized electrons and regions containing neutral Hydrogen can be obtained with a combined study involving CMB and 21 cm fluctuations.Comment: 10 pages, 3 figure

    Field Dependent Superfluid Density in the Optimally Doped SmFeAsO_(1-x)F_y Superconductor

    Full text link
    The magnetic field dependence of the in-plane magnetic penetration depth for optimally doped SmFeAsO_(1-x)F_y was investigated by combining torque magnetometry, SQUID magnetometry, and muon-spin rotation. The results obtained from these techniques show all a pronounced decrease of the superfluid density as the field is increased up to 1.4 T. This behavior is analysed within a two-band model with self-consistently derived coupled gaps, where the superfluid density related to the larger gap is field independent and the superfluid density related to the smaller gap is strongly suppressed with increasing field.Comment: 7 pages, 5 figure

    Fluctuating Cu-O-Cu Bond model of high temperature superconductivity in cuprates

    Full text link
    Twenty years of extensive research has yet to produce a general consensus on the origin of high temperature superconductivity (HTS). However, several generic characteristics of the cuprate superconductors have emerged as the essential ingredients of and/or constraints on any viable microscopic model of HTS. Besides a Tc of order 100K, the most prominent on the list include a d-wave superconducting gap with Fermi liquid nodal excitations, a d-wave pseudogap with the characteristic temperature scale T*, an anomalous doping-dependent oxygen isotope shift, nanometer-scale gap inhomogeneity, etc.. The key role of planar oxygen vibrations implied by the isotope shift and other evidence, in the context of CuO2 plane symmetry and charge constraints from the strong intra-3d Coulomb repulsion U, enforces an anharmonic mechanism in which the oxygen vibrational amplitude modulates the strength of the in-plane Cu-Cu bond. We show, within a Fermi liquid framework, that this mechanism can lead to strong d-wave pairing and to a natural explanation of the salient features of HTS

    The polarizability model for ferroelectricity in perovskite oxides

    Full text link
    This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation (SPA), also nonlinear solutions of the model are handled which are of interest to the physics of relaxor ferroelectrics, domain wall motions, incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure

    Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81

    Full text link
    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations, we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M=108.96±0.12M⊙M=10^{8.96\pm 0.12} M_{\odot} subhalo near one of the images, with a significance of 6.9σ6.9\sigma in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter subhalos down to M∼2×107M⊙M\sim 2\times 10^7 M_{\odot}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted dark matter subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 dataset (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of Λ\LambdaCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.Comment: 18 pages, 13 figures, Comments are welcom
    • …
    corecore