4,973 research outputs found

    An LED-based Flasher System for VERITAS

    Full text link
    We describe a flasher system designed for use in monitoring the gains of the photomultiplier tubes used in the VERITAS gamma-ray telescopes. This system uses blue light-emitting diodes (LEDs) so it can be operated at much higher rates than a traditional laser-based system. Calibration information can be obtained with better statistical precision with reduced loss of observing time. The LEDs are also much less expensive than a laser. The design features of the new system are presented, along with measurements made with a prototype mounted on one of the VERITAS telescopes.Comment: Accepted for publication in Nuclear Instruments and Methods in Physics Research

    Toxoplasma gondii profilin does not stimulate an innate immune response through bovine or human TLR5

    Get PDF
    Toxoplasma gondii is responsible for one of the most prevalent infections in people. T. gondii profilin (TgPr) is a protein integral to parasite movement and cellular invasion. Murine TLR has been described to bind TgPr. Furthermore, more recently, human TLR5 has been described to recognise recombinant TgPr, as well as bacterial flagellin. In addition to infections in humans, T. gondii infects farm animals, but little information is available about its innate recognition. We aimed to investigate whether, similarly to their human orthologue, bovine and porcine TLR5 could also be stimulated by TgPr by using a combination of reporter cell lines expressing full length TLR5 from each species as well as primary cells. Although human and bovine TLR5-transfected cells responded to flagellin, no response was detected upon stimulation with profilin. Furthermore, TgPr failed to elicit IL-6 secretion in human peripheral blood mononuclear cells and CD14þ monocytes. In contrast, exposure of RAW cells, known to express TLR11 to TgPr, slightly increased the IL-6 response. Our data cast doubts on the possibility that profilin is a specific ligand for human TLR5 and bovine TLR5. This leaves the immunogenic properties of this potential target antigen uncharacterised outside of the murine system

    Theory of Dynamic Stripe Induced Superconductivity

    Full text link
    Since the recently reported giant isotope effect on T* [1] could be consistently explained within an anharmonic spin-charge-phonon interaction model, we consider here the role played by stripe formation on the superconducting properties within the same model. This is a two-component scenario and we recast its basic elements into a BCS effective Hamiltonian. We find that the stripe formation is vital to high-Tc superconductivity since it provides the glue between the two components to enhance Tc to the unexpectedly large values observed experimentally.Comment: 7 pages, 2 figure

    The Impact of Halo Properties, Energy Feedback and Projection Effects on the Mass-SZ Flux Relation

    Full text link
    We present a detailed analysis of the intrinsic scatter in the integrated SZ effect - cluster mass (Y-M) relation, using semi-analytic and simulated cluster samples. Specifically, we investigate the impact on the Y-M relation of energy feedback, variations in the host halo concentration and substructure populations, and projection effects due to unresolved clusters along the line of sight (the SZ background). Furthermore, we investigate at what radius (or overdensity) one should measure the integrated SZE and define cluster mass so as to achieve the tightest possible scaling. We find that the measure of Y with the least scatter is always obtained within a smaller radius than that at which the mass is defined; e.g. for M_{200} (M_{500}) the scatter is least for Y_{500} (Y_{1100}). The inclusion of energy feedback in the gas model significantly increases the intrinsic scatter in the Y-M relation due to larger variations in the gas mass fraction compared to models without feedback. We also find that variations in halo concentration for clusters of a given mass may partly explain why the integrated SZE provides a better mass proxy than the central decrement. Substructure is found to account for approximately 20% of the observed scatter in the Y-M relation. Above M_{200} = 2x10^{14} h^{-1} msun, the SZ background does not significantly effect cluster mass measurements; below this mass, variations in the background signal reduce the optimal angular radius within which one should measure Y to achieve the tightest scaling with M_{200}.Comment: 12 pages, 6 figures, to be submitted to Ap

    A comparison of techniques to optimize measurement of voltage changes in electrical impedance tomography by minimizing phase shift errors

    Get PDF
    In electrical impedance tomography, errors due to stray capacitance may be reduced by optimization of the reference phase of the demodulator. Two possible methods, maximization of the demodulator output and minimization of reciprocity error have been assessed, applied to each electrode combination individually, or to all combinations as a whole. Using an EIT system with a single impedance measuring circuit and multiplexer to address the 16 electrodes, the methods were tested on resistor-capacitor networks, saline-filled tanks and humans during variation of the saline concentration of a constant fluid volume in the stomach. Optimization of each channel individually gave less error, particularly on humans, and maximization of the output of the demodulator was more robust. This method is, therefore, recommended to optimize systems and reduce systematic errors with similar EIT systems

    CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps

    Full text link
    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find that only modes up to a maximum multipole of l_max ~ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.Comment: 14 pages, 14 figures, to be submitted to Ap
    corecore