7 research outputs found

    Evaluation of complex integrated care programmes: the approach in North West London

    Get PDF
    Background: Several local attempts to introduce integrated care in the English National Health Service have been tried, with limited success. The Northwest London Integrated Care Pilot attempts to improve the quality of care of the elderly and people with diabetes by providing a novel integration process across primary, secondary and social care organisations. It involves predictive risk modelling, care planning, multidisciplinary management of complex cases and an information technology tool to support information sharing. This paper sets out the evaluation approach adopted to measure its effect. Study design: We present a mixed methods evaluation methodology. It includes a quantitative approach measuring changes in service utilization, costs, clinical outcomes and quality of care using routine primary and secondary data sources. It also contains a qualitative component, involving observations, interviews and focus groups with patients and professionals, to understand participant experiences and to understand the pilot within the national policy context. Theory and discussion: This study considers the complexity of evaluating a large, multi-organisational intervention in a changing healthcare economy. We locate the evaluation within the theory of evaluation of complex interventions. We present the specific challenges faced by evaluating an intervention of this sort, and the responses made to mitigate against them. Conclusions: We hope this broad, dynamic and responsive evaluation will allow us to clarify the contribution of the pilot, and provide a potential model for evaluation of other similar interventions. Because of the priority given to the integrated agenda by governments internationally, the need to develop and improve strong evaluation methodologies remains strikingly important

    Reconfigurable Training and Reservoir Computing in an Artificial Spin-Vortex Ice via Spin-Wave Fingerprinting

    Get PDF
    Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system 'Artificial Spin-Vortex Ice' (ASVI). ASVI can host Ising-like macrospins with strong ice-like vertex interactions, and weakly-coupled vortices with low stray dipolar-field. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control and mode-frequency shifts of df = 3.8 GHz. The enhanced bi-textural microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear fading memory when driven through global field cycles. We employ spin-wave microstate fingerprinting for rapid, scaleable readout of vortex and macrospin populations and leverage this for spin-wave reservoir computation. ASVI performs linear and non-linear mapping transformations of diverse input signals as well as chaotic time-series forecasting. Energy costs of machine learning are spiralling unsustainably, developing low-energy neuromorphic computation hardware such as ASVI is crucial to achieving a zero-carbon computational future

    Neuromorphic Few-Shot Learning: Generalization in Multilayer Physical Neural Networks

    Full text link
    Neuromorphic computing leverages the complex dynamics of physical systems for computation. The field has recently undergone an explosion in the range and sophistication of implementations, with rapidly improving performance. Neuromorphic schemes typically employ a single physical system, limiting the dimensionality and range of available dynamics - restricting strong performance to a few specific tasks. This is a critical roadblock facing the field, inhibiting the power and versatility of neuromorphic schemes. Here, we present a solution. We engineer a diverse suite of nanomagnetic arrays and show how tuning microstate space and geometry enables a broad range of dynamics and computing performance. We interconnect arrays in parallel, series and multilayered neural network architectures, where each network node is a distinct physical system. This networked approach grants extremely high dimensionality and enriched dynamics enabling meta-learning to be implemented on small training sets and exhibiting strong performance across a broad taskset. We showcase network performance via few-shot learning, rapidly adapting on-the-fly to previously unseen tasks

    Ultrastrong Magnon-Magnon Coupling and Chiral Symmetry Breaking in a 3D Magnonic Metamaterial

    Full text link
    Strongly-interacting nanomagnetic arrays are ideal systems for exploring the frontiers of magnonic control. They provide functional reconfigurable platforms and attractive technological solutions across storage, GHz communications and neuromorphic computing. Typically, these systems are primarily constrained by their range of accessible states and the strength of magnon coupling phenomena. Increasingly, magnetic nanostructures have explored the benefits of expanding into three dimensions. This has broadened the horizons of magnetic microstate spaces and functional behaviours, but precise control of 3D states and dynamics remains challenging. Here, we introduce a 3D magnonic metamaterial, compatible with widely-available fabrication and characterisation techniques. By combining independently-programmable artificial spin-systems strongly coupled in the z-plane, we construct a reconfigurable 3D metamaterial with an exceptionally high 16N microstate space and intense static and dynamic magnetic coupling. The system exhibits a broad range of emergent phenomena including ultrastrong magnon-magnon coupling with normalised coupling rates of Δωγ=0.57\frac{\Delta \omega}{\gamma} = 0.57 and magnon-magnon cooperativity up to C = 126.4, GHz mode shifts in zero applied field and chirality-selective magneto-toroidal microstate programming and corresponding magnonic spectral control

    Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation

    No full text
    BACKGROUND: A substantial proportion of patients receiving fibrinolytic therapy for myocardial infarction with ST-segment elevation have inadequate reperfusion or reocclusion of the infarct-related artery, leading to an increased risk of complications and death. METHODS: We enrolled 3491 patients, 18 to 75 years of age, who presented within 12 hours after the onset of an ST-elevation myocardial infarction and randomly assigned them to receive clopidogrel (300-mg loading dose, followed by 75 mg once daily) or placebo. Patients received a fibrinolytic agent, aspirin, and when appropriate, heparin (dispensed according to body weight) and were scheduled to undergo angiography 48 to 192 hours after the start of study medication. The primary efficacy end point was a composite of an occluded infarct-related artery (defined by a Thrombolysis in Myocardial Infarction flow grade of 0 or 1) on angiography or death or recurrent myocardial infarction before angiography. RESULTS: The rates of the primary efficacy end point were 21.7 percent in the placebo group and 15.0 percent in the clopidogrel group, representing an absolute reduction of 6.7 percentage points in the rate and a 36 percent reduction in the odds of the end point with clopidogrel therapy (95 percent confidence interval, 24 to 47 percent; P<0.001). By 30 days, clopidogrel therapy reduced the odds of the composite end point of death from cardiovascular causes, recurrent myocardial infarction, or recurrent ischemia leading to the need for urgent revascularization by 20 percent (from 14.1 to 11.6 percent, P=0.03). The rates of major bleeding and intracranial hemorrhage were similar in the two groups. CONCLUSIONS: In patients 75 years of age or younger who have myocardial infarction with ST-segment elevation and who receive aspirin and a standard fibrinolytic regimen, the addition of clopidogrel improves the patency rate of the infarct-related artery and reduces ischemic complications

    Database Marketing

    No full text
    corecore