12 research outputs found

    Developing the human-computer interface for Space Station Freedom

    Get PDF
    For the past two years, the Human-Computer Interaction Laboratory (HCIL) at the Johnson Space Center has been involved in prototyping and prototype reviews of in support of the definition phase of the Space Station Freedom program. On the Space Station, crew members will be interacting with multi-monitor workstations where interaction with several displays at one time will be common. The HCIL has conducted several experiments to begin to address design issues for this complex system. Experiments have dealt with design of ON/OFF indicators, the movement of the cursor across multiple monitors, and the importance of various windowing capabilities for users performing multiple tasks simultaneously

    Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions

    Get PDF
    A test battery was developed for cursor control device evaluation: four tasks were taken from ISO 9241-9, and three from previous studies conducted at NASA. The tasks focused on basic movements such as pointing, clicking, and dragging. Four cursor control devices were evaluated with and without Extravehicular Activity (EVA) gloves to identify desirable cursor control device characteristics for NASA missions: 1) the Kensington Expert Mouse, 2) the Hulapoint mouse, 3) the Logitech Marble Mouse, and 4) the Honeywell trackball. Results showed that: 1) the test battery is an efficient tool for differentiating among input devices, 2) gloved operations were about 1 second slower and had at least 15% more errors; 3) devices used with gloves have to be larger, and should allow good hand positioning to counteract the lack of tactile feedback, 4) none of the devices, as designed, were ideal for operation with EVA gloves

    The effect of on/off indicator design on state confusion, preference, and response time performance, executive summary

    Get PDF
    Investigated are five designs of software-based ON/OFF indicators in a hypothetical Space Station Power System monitoring task. The hardware equivalent of the indicators used in the present study is the traditional indicator light that illuminates an ON label or an OFF label. Coding methods used to represent the active state were reverse video, color, frame, check, or reverse video with check. Display background color was also varied. Subjects made judgments concerning the state of indicators that resulted in very low error rates and high percentages of agreement across indicator designs. Response time measures for each of the five indicator designs did not differ significantly, although subjects reported that color was the best communicator. The impact of these results on indicator design is discussed

    Microgravity cursor control device evaluation for Space Station Freedom workstations

    Get PDF
    This research addressed direct manipulation interface (curser-controlled device) usability in microgravity. The data discussed are from KC-135 flights. This included pointing and dragging movements over a variety of angles and distances. Detailed error and completion time data provided researchers with information regarding cursor control shape, selection button arrangement, sensitivity, selection modes, and considerations for future research

    The Fine Motor Skills and Cognition Test Batteries: Normative Data and Interdependencies

    Get PDF
    Fine motor skills and cognitive abilities are major contributors to crew performance on essentially all extravehicular and intra-vehicular activities during spaceflight. It is critical for the crews safety, and for mission productivity, to know if, and when, motor skills or cognitive abilities are compromised so that countermeasures may be introduced. NASA has developed two test batteries to measure and monitor astronaut cognitive and fine motor skills. The Cognition Test Battery contains 10 sub-tests that assess cognitive behaviors ranging from low level visual perception to high level decision-making. The Fine Motor Skills Test Battery contains 4 sub-tests that assess finger dexterity, manual dexterity and wrist-finger speed. This study sought to determine acceptable norms for both batteries in an astronaut-like population and to identify the extent to which fine motor skills contribute to cognitive test scores

    Maintenance Procedure Display: Head Mounted Display (HMD) Evaluations

    Get PDF
    A viewgraph presentation describing maintenance procedures for head mounted displays is shown. The topics include: 1) Study Goals; 2) Near Eye Displays (HMDs); 3) Design; 4) Phase I-Evaluation Methods; 5) Phase 1 Results; 6) Improved HMD Mounting; 7) Phase 2 -Evaluation Methods; 8) Phase 2 Preliminary Results; and 9) Next Steps

    Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation

    Get PDF
    As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities. Historically, engineering-dominated organizations have tended to view good Human Factors (HF) as a desire rather than a requirement in system design and development. Our field has made significant gains in the past decade, however; the Department of Defense, for example, now recognizes Human-System Integration (HSI), of which HF is a component, as an integral part of their divisions hardware acquisition processes. And our own agency was far more accepting of HF/HSI requirements during the most recent vehicle systems definition than in any prior cycle. Nonetheless, HF subject matter experts at NASA often find themselves in catch up mode... coping with legacy systems (hardware and software) and procedures that were designed with little regard for the human element, and too often with an attitude of we can deal with any operator issues during training. Our challenge, then, is to segregate the true knowledge gaps in Space Human Factors from the prior failures to incorporate best (or even good) HF design principles. Further, we strive to extract the overarching core HF issues from the point-design-specific concerns that capture the operators (and managers) attention. Generally, our approach embraces a 3M approach to Human Factors: Measurement, Modeling, and Mitigation. Our first step is to measure human performance, to move from subjective anecdotes to objective, quantified data. Next we model the phenomenon, using appropriate methods in our field, modifying them to suit the unique aspects of the space environment. Finally, we develop technologies, tools, and procedures to mitigate the decrements in human performance and capabilities that occur in space environments. When successful, we decrease risks to crew safety and to mission success. When extremely successful (or lucky), we devise generalizable solutions that advance the state of our practice. Our panel is composed of researchers from diverse domains of our project... from different boxes, if you will, of the Human Factors Analysis and Classification System (HFACS)

    Human Engineering of Space Vehicle Displays and Controls

    Get PDF
    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies

    Information Presentation

    Get PDF
    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew on flight vehicles, surface landers and habitats, and during extra-vehicular activities (EVA). Designers of displays and controls for exploration missions must be prepared to select the text formats, label styles, alarms, electronic procedure designs, and cursor control devices that provide for optimal crew performance on exploration tasks. The major areas of work, or subtasks, within the Information Presentation DRP are: 1) Controls, 2) Displays, 3) Procedures, and 4) EVA Operations

    A comparative analysis of data entry devices and typing modes

    No full text
    In our technology oriented society, data entry and manipulation are some of the most important tasks in which the human is involved. The present research is concerned with optimization of data entry via a computer keyboard. There is evidence that foot pedal devices could prove beneficial when used in conjunction with a keyboard for complex data entry. In the present research, the viability of a foot pedal entry device and a parallel mode of keystroking were examined. These two conditions, along with the standard key input and serial mode of keystroking were compared in two studies. Results showed that for inexperienced or unskilled typists, the addition of a foot pedal does not provide for better performance. Subjects performing with a foot pedal were consistently faster but committed more errors. Worst performance was noted for subjects using the foot pedal in a serial mode. There are indications in the data which suggest that high-skill typists may be able to more successfully adapt to using a foot pedal device, and may also be more able to coordinate their limbs in order to take advantage of the benefits of parallel entry. Implications for these results in light of current computer system design are discussed
    corecore