1,552 research outputs found

    Hoisting frame facilitates handling of large objects

    Get PDF
    Hoisting frame can be used with a standard 5-ton forklift to handle the large spreader bars, or other bulky pieces of equipment, much faster and more efficiently than with a boom or gantry crane. In addition forklifts of this type are more readily available

    Diversity Of Short Gamma-Ray Burst Afterglows From Compact Binary Mergers Hosting Pulsars

    Full text link
    Short gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late- time rapid fading in their lightcurves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surround- ing the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the lightcurve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low field, long lived pulsars, and high field pulsars. We find that a sizable fraction (~20-50%) of low field pulsars are likely to reside in neutron star binaries based on observations, while their high field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow lightcurves.Comment: Accepted to ApjL. Direct comparison to observed X-Ray afterglows now included. 5 Figure

    Information retrieval system

    Get PDF
    Generalized information storage and retrieval system capable of generating and maintaining a file, gathering statistics, sorting output, and generating final reports for output is reviewed. File generation and file maintenance programs written for the system are general purpose routines

    Search for Ferromagnetism in doped semiconductors in the absence of transition metal ions

    Full text link
    In contrast to semiconductors doped with transition metal magnetic elements, which become ferromagnetic at temperatures below ~ 100K, semiconductors doped with non-magnetic ions (e.g. silicon doped with phosphorous) have not shown evidence of ferromagnetism down to millikelvin temperatures. This is despite the fact that for low densities the system is expected to be well modeled by the Hubbard model, which is predicted to have a ferromagnetic ground state at T=0 on 2- or 3-dimensional bipartite lattices in the limit of strong correlation near half-filling. We examine the impurity band formed by hydrogenic centers in semiconductors at low densities, and show that it is described by a generalized Hubbard model which has, in addition to strong electron-electron interaction and disorder, an intrinsic electron-hole asymmetry. With the help of mean field methods as well as exact diagonalization of clusters around half filling, we can establish the existence of a ferromagnetic ground state, at least on the nanoscale, which is more robust than that found in the standard Hubbard model. This ferromagnetism is most clearly seen in a regime inaccessible to bulk systems, but attainable in quantum dots and 2D heterostructures. We present extensive numerical results for small systems that demonstrate the occurrence of high-spin ground states in both periodic and positionally disordered 2D systems. We consider how properties of real doped semiconductors, such as positional disorder and electron-hole asymmetry, affect the ground state spin of small 2D systems. We also discuss the relationship between this work and diluted magnetic semiconductors, such as Ga_(1-x)Mn_(x)As, which though disordered, show ferromagnetism at relatively high temperatures.Comment: 47 page

    Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon

    Full text link
    We apply the ADM 3+1 formalism to derive the general relativistic magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild metric. Respective perturbed equations are linearized for non-magnetized and magnetized plasmas both in non-rotating and rotating backgrounds. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed for the existence of waves with positive angular frequency in the region near the horizon. Our results support the fact that no information can be extracted from the Schwarzschild black hole. It is concluded that negative phase velocity propagates in the rotating background whether the black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi

    Ferromagnetism in magnetically doped III-V semiconductors

    Full text link
    The origin of ferromagnetism in semimagnetic III-V materials is discussed. The indirect exchange interaction caused by virtual electron excitations from magnetic impurity level in the bandgap to the valence band can explain ferromagnetism in GaAs(Mn) no matter samples are degenerated or not. Formation of ferromagnetic clusters and percolation picture of phase transition describes well all available experimental data and allows to predict the Mn-composition dependence of transition temperature in wurtzite (Ga,In,Al)N epitaxial layers.Comment: 4 pages with 3 figure

    Fast Spectrum Molten Salt Reactor Options

    Get PDF
    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option

    A Decision Tool to Identify Population Management Strategies for Common Ravens and Other Avian Predators

    Get PDF
    Some avian species have developed the capacity to leverage resource subsidies associated with human manipulated landscapes to increase population densities in habitats with naturally low carrying capacities. Elevated corvid densities and new territory establishment have led to an unsustainable increase in depredation pressure on sympatric native wildlife prey populations as well as in crop damage. Yet, subsidized predator removal programs aimed at reducing densities are likely most effective longer-term when conducted in tandem with subsidy control, habitat management, and robust assessment monitoring programs. We developed decision support software that leverages stage structured Lefkovitch population matrices to compare and identify treatment strategies that reduce subsidized avian predator densities most efficiently, in terms of limiting both cost and take levels. The StallPOPd (Version 4; available at https://doi.org/10.7298/sk2e-0c38.4) software enables managers to enter the area of their management stratum and the demographic properties (vital rates) of target bird population(s) of interest to evaluate strategies to decrease or curtail further population growth. Strategies explicitly include the reduction in fertility (i.e., eggs hatched) and/or the culling of hatchlings, non-breeders and/or breeders, but implicitly comprise reduction in survival or reproduction through subsidy denial. We illustrate the utilities of the software with examples using common ravens (Corvus corax; ravens) in the Mojave Desert of California, USA. Unfortunately, the survival and reproduction effects of each unit of a particular subsidy in that system have remained elusive, though this is the priority of current research. Because the software leverages a life history representation that is known to characterize hundreds of wildlife species in addition to ravens, the work expands the suite of tools available to wildlife managers and agricultural industry specialists to abate bird damage and impacts on sensitive wildlife in habitats with persistent human subsidies

    FHR Generic Design Criteria

    Get PDF
    The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC) - based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process
    corecore