98 research outputs found

    Modelling hazardous distances for large-scale liquid hydrogen pool releases

    Get PDF
    Abstract An analysis has been carried out using a CFD model (FLACS) to simulate large-scale liquid hydrogen (LH2) pool releases to examine their behaviour and predict the LH2 pool size, downwind hazardous distance, and flammable mass of the hydrogen-air clouds formed for different environmental conditions and release scenarios. The FLACS pool model reproduces similar qualitative trends with regard to the effect of spill rate, spill duration and wind speed on the flammable cloud extent to those observed in the NASA WSTF experimental tests, although significant quantitative differences in the results are also apparent. FLACS simulations were also performed for a number of different transient and continuous LH2 spill release rates to predict the maximum downwind hazardous distances as a function of the LH2 spill release rate. The results are intended to assist with assessing the safety of future LH2 aircraft and airport LH2 storage facilities, being considered as part of the EU ENABLEH2 project

    Causes, Consequences and Prevention of Refrigeration Fires in Residential Dwellings

    Get PDF
    There are around 300 residential dwelling fires in Great Britain each year where a fridge or freezer is cited as the cause. A number of these incidents have resulted in injuries/fatalities and produced significant levels of property damage. This paper examines the causes and consequences of refrigeration fires in residential dwelling fires in Great Britain (London and England) and the evidence collected via fire investigation of residential dwelling fires involving fridges or freezers. Analysis of the data collected from these fires suggests that, once ignition occurs, fires started by faults in fridge/freezers are more likely to spread beyond both the appliance and the room of origin, and tend to cause more damage than fires started by the other types of white goods appliance (washing machine, dishwasher or tumble dryer). A number of common failure modes leading to ignition in domestic refrigeration fires, along with specific fire escalation and spread mechanism are identified. Based upon the information obtained from fire investigations and a comparison between the design and construction of refrigeration appliances used in Great Britain and USA, a number of recommendations are suggested which could be used to help reduce the risk of domestic refrigeration fires

    Ignition of flammable hydrogen/air mixtures by high mass mechanical impact of Magnox contaminated surfaces

    Get PDF
    Magnox and its corrosion products are a major constituent of some legacy nuclear waste storage silos which generate hydrogen. An experimental study investigates the likelihood of ignition of hydrogen/air when large mass projectiles impact rusty surfaces with Magnox contamination. Ignition is observed with 50kg projectiles impacting a 45º Magnox-smeared rusty anvil plate with KE as low as 40J. Theoretical calculations relating to the angled impacts reveal that they involve substantial tangential energy losses associated with frictional heating of the impact surfaces. It is shown that these energy losses are particularly dependent on the shape of the projectile since projectile geometry determines the radius of gyration and the relationship of centre of gravity to the impact point. In conclusion, the projectile shape is likely to be of greater importance than the mass (i.e. for a given impact energy) because of its direct bearing on the magnitude of the tangential energy loss

    Combined Hazard Analyses to Explore the Impact of Liquid Hydrogen Fuel on the Civil Aviation Industry

    Get PDF
    Interest in green technology in aviation is increasing. To address environmental issues, novel fuels such as cryogenic liquid hydrogen (LH2) are being explored, however there are safety concerns. This work combines safety studies to explore LH2 fuel safety for civil aviation. Preliminary hazard analyses (PHAs) (utilizing over 70 standards and guides) have been performed identifying possible LH2 hazards on-board aircraft. A PHA has also been produced, with industry stakeholder involvement, to understand the major concerns for LH2 use at airports. Gaps in fundamental knowledge and LH2 technology have been identified, and two of these explored. Firstly, work has been started to understand the fundamental flammability of hydrogen in altitude conditions. Secondly, FLACS CFD modelling has been used to simulate large-scale LH2 pool releases to examine behavior and predict pool size, downwind flammable regions, and flammable mass clouds formed for different environmental conditions and release scenarios. This has identified significant effects of wind speed on buoyancy and flammable cloud travel which must be taken into account of any hydrogen fuel facility design. This work (part of the EC funded ENABLEH2 project) is some of the first in over a decade to re-examine the safety of hydrogen propulsion in aircraft. This process has identified wide-ranging issues that must be addressed before hydrogen propulsion can be introduced in civil aviation

    Potential hazard consequences to personnel exposed to the ignition of small volumes of weakly confined stoichiometric hydrogen/air mixture

    Get PDF
    Many studies have been devoted to understanding the consequence of ignition events that could occur as a result of using hydrogen as an alternative to fossil fuels or when hydrogen is present in large scale industrial or nuclear waste sites. Little attention has however, been given to the effect of explosion in small scale operations: this could involve service work with manual handling and manipulation of gas containing packages or vessels. The purpose of this study is to begin to address this knowledge gap and report the results of an experimental program carried out to simulate the effect of localised and weakly confined small volume hydrogen explosions on personal safety. Three aspects of personal injury consequences are considered; injury from shock loading to the head/brain, skin burns and acoustic/hearing damage. It is concluded from ignition and acoustic noise exposure experiments, carried with stoichiometric hydrogen /air mixtures, that injuries arising from shock loading or burns to the skin are less likely than hearing damage. It is suggested that further work should focus on the noise exposure and hearing damage effects of small scale explosions

    Energy losses during drop weight mechanical impacts with special reference to ignition of flammable atmospheres in nuclear decommissioning: theory and determination of experimental coefficients for impact analysis and prediction

    Get PDF
    The major purpose of this study is to provide a framework for determination of energy losses resulting from mechanical impacts of the kind that could occur during nuclear decommissioning of waste material. Measurements have been made of final translational and rotational velocities for impacts between projectiles of different length and a massive barrier. This enabled determination of experimental values of the impact coefficients and energy losses. It was found that the total energy losses could be accurately accounted for by the sum of those pertaining to the normal and tangential processes, thus indicating that these include any losses due to vibration. The results obtained clearly support an Amontons–Coulomb friction model and the previously held contention that there is a limiting value for the impulse ratio at low angles of barrier inclination. Although sliding surfaces are likely to be modified during impact, it is shown that any original contamination on the contacting surfaces results in a very large decrease in impulse ratio or friction coefficient. This represents an important finding in the context of mechanical ignition testing indicating that the state of the impact surfaces and their handling need to be taken into account. The difficulties in establishing appropriate values for the impact coefficients and dealing with the effect of mechanical vibrations on the energy losses are discussed and equations derived for determining the tangential and normal energy losses from known initial velocities

    Application of Bayesian methods and networks to ignition hazard event prediction in nuclear waste decommissioning operations

    Get PDF
    The major purpose of the study is to examine how Bayesian networks can be used to represent and understand potential ignition scenarios in nuclear waste decommissioning. This is illustrated using a network to represent a situation with stacked storage boxes containing pyrophoric material removed from waste storage silos. Corrosion of this material during storage produces hydrogen which is released through a filter medium into the gap between the boxes. The probabilistic relationships used to indicate dependence between network nodes are expressed by conditional probability tables or C++ coded equations that relate to UK nuclear industry corrosion and storage data. The study focuses on optimal prediction of the likelihood of a flammable hydrogen atmosphere arising in the gap between stacked boxes and the conditions necessary to exceed the lower flammable limit. It is concluded that the approach offers a useful means of easily determining the manner in which varying the controlling parameters affects the possibility of an ignition event. The effect of data variation can be examined at first hand using the supplementary Bayesian Network that accompanies the article

    Chemochromic Pd-V2O5 Sensors for Passive Hydrogen Detection in Nuclear Containments

    Get PDF
    The ability to detect and monitor hydrogen gas efficiently in process and storage facilities, handling nuclear material, is crucial to ensuring their safety. The accumulation of hydrogen gas, above the lower flammable limit (LFL), in a nuclear waste containment is a concern since it creates the potential for a hydrogen-air explosion to occur, which could lead to a loss of containment and result in the uncontrolled release of radioactive material into the surrounding environment. The events that took place at Fukushima Daiichi Nuclear Power Plant highlighted the vulnerability of conventional hydrogen detection to extreme events, where power may be lost. In the present work, chemochromic hydrogen sensors have been fabricated, using transition metal oxide thin films, to provide eye-readable detection systems that would be resilient to plant power failure. Vanadium oxide (V2O5) films were prepared on quartz glass substrates by sol-gel deposition and sensitized with a palladium (Pd) catalyst, deposited by electron beam evaporation. When exposed to hydrogen, the Pd catalyst dissociates H2 to H atoms, which diffuse into the V(V)2O5 forming a hydrogen-vanadium metal bronze, H2V(III)2O5, resulting in a noticeable colour change from orange to dark green. To assess their viability for nuclear safety applications, these sensors have been irradiated to total doses between 5 and 250 kGy using a Co-60 gamma isotope irradiator. The results suggest that gamma irradiation, at the levels examined, has an effect on the initial colour of the V2O5 and Pd-V2O5 thin films with decreased transmittance above 540 nm. The orange starting colour darkened and developed a green tone, with the degree of colour change depending on the applied total dose. Changes in surface morphology and characteristics have been examined by using Scanning Electron Microscopy (SEM) and Raman spectroscopy. High level (250 kGy) gamma radiation exposure begins to produce surface degradation on V2O5 thin films; however this behaviour is not observed for films that are also coated with palladium. Chemochromic properties of both un-irradiated and irradiated Pd-V2O5 thin films were determined by examining their optical transmittance, using UV-vis spectroscopy, under exposure to a 4% H2-N2 gas mixture. Exposure to gamma radiation has been found to have negligible effect upon colour change behaviour after 30 minutes exposure to hydrogen gas. The results suggest that the thin film V2O5 sensitised with Pd is a plausible technique for application in the monitoring of hydrogen gas in low-level gamma radiation environments

    Characterising the performance of hydrogen sensitive coatings for nuclear safety applications

    Get PDF
    The detection of hydrogen gas is essential in ensuring the safety of nuclear plants. However, events at Fukushima Daiichi NPP highlighted the vulnerability of conventional detection systems to extreme events, where power may be lost. Herein, chemochromic hydrogen sensors have been fabricated using transition metal oxide thin films, sensitised with a palladium catalyst, to provide passive hydrogen detection systems that would be resilient to any plant power failures. To assess their viability for nuclear safety applications, these sensors have been gamma-irradiated to four total doses (0, 5, 20, 50 kGy) using a Co-60 gamma radioisotope. Optical properties of both un-irradiated and irradiated samples were investigated to compare the effect of increased radiation dose on the sensors resultant colour change. The results suggest that gamma irradiation, at the levels examined (>5 kGy), has a significant effect on the initial colour of the thin films and has a negative effect on the hydrogen sensing abilities

    Talking South African fathers: a critical examination of men’s constructions and experiences of fatherhood and fatherlessness

    Get PDF
    The absence of biological fathers in South Africa has been constructed as a problem for children of both sexes but more so for boy-children. Arguably the dominant discourse in this respect has demonized non-nuclear, female-headed households. Fathers are constructed as either absent or ‘bad’. Thus it has become important to explore more closely how male care-givers have been experienced by groups of men in South Africa. This article examines discourses of fatherhood and fatherlessness by drawing on qualitative interviews with a group of 29 men who speak about their reported experiences and understandings of being fathered or growing up without biological fathers. Two major and intertwined subjugated discourses about adult men’s experiences of being fathered that counter- balance the prevailing discourses about meaning of fatherhood and fatherlessness became evident, namely, ‘being always there’ and ‘talking fatherhood’. The importance of the experience of fatherhood as ‘being there’, which relates to a quality of time and relationship between child and father rather than physical time together, is illustrated. It is not only biological fathers who can ‘be there’ for their sons but also social fathers, other significant male role models and father figures who step in at different times in participants’ lives when biological fathers are unavailable for whatever reason. Second, many positive experiences of fathers or father figures that resist a traditional role of authority and control and subscribe to more nurturant and non-violent forms of care, represented as ‘talking’ fathers, are underlined. If we are to better understand the impact of colonial and apartheid history and its legacy on family life in contemporary society, there is a need for more historically and contextually informed studies on the meaning of fatherhood and fatherlessness.Web of Scienc
    • …
    corecore