503 research outputs found

    Sound localization with bilateral bone conduction devices

    Get PDF
    Purpose To investigate sound localization in patients bilaterally fitted with bone conduction devices (BCDs). Additionally, clinically applicable methods to improve localization accuracy were explored. Methods Fifteen adults with bilaterally fitted percutaneous BCDs were included. At baseline, sound localization, (un)aided pure-tone thresholds, device use, speech, spatial and qualities of hearing scale (SSQ) and York hearing-related quality of life (YHRQL) questionnaire were measured. Settings to optimize sound localizing were added to the BCDs. At 1 month, sound localization was assessed again and localization was practiced with a series of sounds with visual feedback. At 3 months, localization performance, device use and questionnaire scores were determined again. Results At baseline, one patient with congenital hearing loss demonstrated near excellent localization performance and four other patients (three with congenital hearing loss) localized sounds (quite) accurately. Seven patients with acquired hearing loss were able to lateralize sounds, i.e. identify whether sounds were coming from the left or right side, but could not localize sounds accurately. Three patients (one with congenital hearing loss) could not even lateralize sounds correctly. SSQ scores were significantly higher at 3 months. Localization performance, device use and YHRQL scores were not significantly different between visits. Conclusion In this study, the majority of experienced bilateral BCD users could lateralize sounds and one third was able to localize sounds (quite) accurately. The localization performance was robust and stable over time. Although SSQ scores were increased at the last visit, optimizing device settings and a short practice session did not improve sound localization

    Surface Grafting of Poly(L-glutamates). 3. Block Copolymerization

    Get PDF
    This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(γ-benzyl L-glutamate) (PBLG) as the A-block and poly(γ-methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (γ-aminopropyl)triethoxysilane (APS) on silicon wafers initiated the ring-opening polymerization of N-carboxyanhydrides of glutamic acid esters (NCAs). After removal of the BLG-NCA monomer solution after a certain reaction time, the amine end groups of the formed PBLG blocks acted as initiators for the second monomers. This method provides the possibility of making layered structures of surface-grafted block copolymers with tuned properties. Ellipsometry and small-angle X-ray reflection (SAXR) measurements revealed the thickness of the polypeptide layers ranging from 45-100 Å of the first block to 140-270 Å for the total block copolypeptides. The chemical composition of the blocks was determined by X-ray photoelectron spectroscopy (XPS). In addition, Fourier transform infrared transmission spectroscopy (FT-IR) revealed that the polypeptide main chains of both blocks consisted of pure R-helices. The average orientation of the helices ranging from 22-42° with respect to the substrate within the first block to 31-35° in the second block could be derived with FT-IR as well.

    Improved Horizontal Directional Hearing in Bone Conduction Device Users with Acquired Unilateral Conductive Hearing Loss

    Get PDF
    We examined horizontal directional hearing in patients with acquired severe unilateral conductive hearing loss (UCHL). All patients (n = 12) had been fitted with a bone conduction device (BCD) to restore bilateral hearing. The patients were tested in the unaided (monaural) and aided (binaural) hearing condition. Five listeners without hearing loss were tested as a control group while listening with a monaural plug and earmuff, or with both ears (binaural). We randomly varied stimulus presentation levels to assess whether listeners relied on the acoustic head-shadow effect (HSE) for horizontal (azimuth) localization. Moreover, to prevent sound localization on the basis of monaural spectral shape cues from head and pinna, subjects were exposed to narrow band (1/3 octave) noises. We demonstrate that the BCD significantly improved sound localization in 8/12 of the UCHL patients. Interestingly, under monaural hearing (BCD off), we observed fairly good unaided azimuth localization performance in 4/12 of the patients. Our multiple regression analysis shows that all patients relied on the ambiguous HSE for localization. In contrast, acutely plugged control listeners did not employ the HSE. Our data confirm and further extend results of recent studies on the use of sound localization cues in chronic and acute monaural listening

    Specific Human Astrocyte Subtype Revealed by Affinity Purified GFAP+1 Antibody; Unpurified Serum Cross-Reacts with Neurofilament-L in Alzheimer

    Get PDF
    The human GFAP splice variants GFAPΔ164 and GFAPΔexon6 both result in a GFAP protein isoform with a unique out-of-frame carboxy-terminus that can be detected by the GFAP+1 antibody. We previously reported that GFAP+1 was expressed in astrocytes and in degenerating neurons in Alzheimer's disease brains. In this study we aimed at further investigating the neuronal GFAP+1 expression and we started by affinity purifying the GFAP+1 antibody. The purified antibody resulted in a loss of neuronal GFAP+1 signal, although other antibodies directed against the amino- and carboxy-terminus of GFAPα still revealed GFAP-immunopositive neurons, as described before. With an in-depth analysis of a western blot, followed by mass spectrometry we discovered that the previously detected neuronal GFAP+1 expression was due to cross-reactivity of the antibody with neurofilament-L (NF-L). This was confirmed by double-label fluorescent immunohistochemistry and western blotting with the unpurified GFAP+1 antibody and an antibody against NF-L. Our data imply that NF-L can accumulate in some tangle-like structures in Alzheimer brains. More importantly, the purified GFAP+1 antibody clearly revealed a specific subtype of astrocytes in the adult human brain. These large astrocytes are present throughout the brain, e.g., along the subventricular zone, in the hippocampus, in the striatum and in the spinal cord of controls, Alzheimer, and Parkinson patients. The presence of a specific GFAP-isoform suggests a specialized function of these astrocytes

    The effect of nutrients on pyrrolizidine alkaloids in Senecio plants and their interactions with herbivores and pathogens

    Get PDF
    The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants

    Defensive properties of pyrrolizidine alkaloids against microorganisms

    Get PDF
    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores existed on this planet, plants had to cope with microbial pathogens. Therefore, plant pathogenic microorganisms may have played an important role in the early evolution of the secondary metabolite diversity. In this review, we discuss the impact that plant-produced PAs have on plant-associated microorganisms. The objective of the review is to present the current knowledge on PAs with respect to anti-microbial activities, adaptation and detoxification by microorganisms, pathogenic fungi, root protection and PA induction. Many in vitro experiments showed effects of PAs on microorganisms. These results point to the potential of microorganisms to be important for the evolution of PAs. However, only a few in vivo studies have been published and support the results of the in vitro studies. In conclusion, the topics pointed out in this review need further exploration by carrying out ecological experiments and field studies

    Attract and deter: a dual role for pyrrolizidine alkaloids in plant–insect interactions

    Get PDF
    Pyrrolizidine alkaloids (PAs) are the major defense compounds of plants in the Senecio genus. Here I will review the effects of PAs in Senecio on the preference and performance of specialist and generalist insect herbivores. Specialist herbivores have evolved adaptation to PAs in their host plant. They can use the alkaloids as cue to find their host plant and often they sequester PAs for their own defense against predators. Generalists, on the other hand, can be deterred by PAs. PAs can also affect survival of generalist herbivores. Usually generalist insects avoid feeding on young Senecio leaves, which contain a high concentration of alkaloids. Structurally related PAs can differ in their effects on insect herbivores, some are more toxic than others. The differences in effects of PAs on specialist and generalists could lead to opposing selection on PAs, which may maintain the genetic diversity in PA concentration and composition in Senecio species
    corecore