11 research outputs found

    CSF proteomics in autosomal dominant Alzheimer's disease highlights parallels with sporadic disease

    Get PDF
    Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q &lt; 0.05). The most strongly upregulated proteins (fold change &gt;1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P &lt; 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.</p

    Neuroinflammatory CSF biomarkers MIF, sTREM1, and sTREM2 show dynamic expression profiles in Alzheimer’s disease

    No full text
    Abstract Background There is a need for novel fluid biomarkers tracking neuroinflammatory responses in Alzheimer’s disease (AD). Our recent cerebrospinal fluid (CSF) proteomics study revealed that migration inhibitory factor (MIF) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1) increased along the AD continuum. We aimed to assess the potential use of these proteins, in addition to sTREM2, as CSF biomarkers to monitor inflammatory processes in AD. Methods We included cognitively unimpaired controls (n = 67, 63 ± 9 years, 24% females, all amyloid negative), patients with mild cognitive impairment (MCI; n = 92, 65 ± 7 years, 47% females, 65% amyloid positive), AD (n = 38, 67 ± 6 years, 8% females, all amyloid positive), and DLB (n = 50, 67 ± 6 years, 5% females, 54% amyloid positive). MIF, sTREM1, and sTREM2 levels were measured by validated immunoassays. Differences in protein levels between groups were tested with analysis of covariance (corrected for age and sex). Spearman correlation analysis was performed to evaluate the association between these neuroinflammatory markers with AD-CSF biomarkers (Aβ42, tTau, pTau) and mini-mental state examination (MMSE) scores. Results MIF levels were increased in MCI (p  0.05) compared to controls. Levels of sTREM1 were specifically increased in AD compared to controls (p  0.05), while sTREM2 levels were increased specifically in MCI compared to all other groups (all p < 0.001). Neuroinflammatory proteins were highly correlated with CSF pTau levels (MIF: all groups; sTREM1: MCI, AD and DLB; sTREM2: controls, MCI and DLB). Correlations with MMSE scores were observed in specific clinical groups (MIF in controls, sTREM1 in AD, and sTREM2 in DLB). Conclusion Inflammatory-related proteins show diverse expression profiles along different AD stages, with increased protein levels in the MCI stage (MIF and sTREM2) and AD stage (MIF and sTREM1). The associations of these inflammatory markers primarily with CSF pTau levels indicate an intertwined relationship between tau pathology and inflammation. These neuroinflammatory markers might be useful in clinical trials to capture dynamics in inflammatory responses or monitor drug–target engagement of inflammatory modulators

    Thimet oligopeptidase as a potential CSF biomarker for Alzheimer's disease : A cross-platform validation study

    Get PDF
    Our previous antibody-based cerebrospinal fluid (CSF) proteomics study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aβ) neuropeptidase, was increased in mild cognitive impairment with amyloid pathology (MCI-Aβ+) and Alzheimer's disease (AD) dementia compared with controls and dementia with Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific biomarker for AD. We aimed to develop THOP1 immunoassays for large-scale analysis and validate our proteomics findings in two independent cohorts. We developed in-house CSF THOP1 immunoassays on automated Ella and Simoa platforms. The performance of the different assays were compared using Passing-Bablok regression analysis in a subset of CSF samples from the discovery cohort (n = 72). Clinical validation was performed in two independent cohorts (cohort 1: n = 200; cohort 2: n = 165) using the Ella platform. THOP1 concentrations moderately correlated between proteomics analysis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was increased in MCI-Aβ+ (>1.3-fold) and AD (>1.2-fold) compared with controls; and between MCI-Aβ+ and DLB (>1.2-fold). Higher THOP1 concentrations were detected in AD compared with DLB only when both cohorts were analyzed together. In both cohorts, THOP1 correlated with CSF total tau (t-tau), phosphorylated tau (p-tau), and Aβ40 (Rho > 0.540) but not Aβ42. Validation of our proteomics findings underpins the potential of CSF THOP1 as an early specific biomarker associated with AD pathology. The use of antibody-based platforms in both the discovery and validation phases facilitated the translation of proteomics findings, providing an additional workflow that may accelerate the development of biofluid-based biomarkers

    Apolipoprotein L1 is increased in frontotemporal lobar degeneration post-mortem brain but not in ante-mortem cerebrospinal fluid

    Get PDF
    Aims: Frontotemporal Dementia (FTD) is caused by frontal-temporal lobar degeneration (FTLD), characterized mainly by brain protein aggregates of tau (FTLD-Tau) or TDP-43 (FTLD-TDP). The clinicopathological heterogeneity makes ante-mortem diagnosis of these pathological subtypes challenging. Our proteomics study showed increased Apolipoprotein L1 (APOL1) levels in CSF from FTD patients, which was prominently expressed in FTLD-Tau. We aimed to understand APOL1 expression in FTLD post-mortem brain tissue and to validate its potential as a CSF biomarker for FTD and its pathological subtypes. Methods: APOL1 levels were analyzed in the frontal cortex of FTLD (including FTLD-Tau and FTLD-TDP) and non-demented controls by immunohistochemistry (FTLD total = 18 (12 FTLD-Tau and 6 FTLD-TDP); controls = 9), western blot (WB), and a novel prototype ELISA (FTLD total = 44 (21 FTLD-Tau and 23 FTLD-TDP); controls = 9). The association of APOL1 immunoreactivity with phosphorylated Tau (pTau) and TDP-43 (pTDP-43) immunoreactivity was assessed. CSF APOL1 was analyzed in confirmed FTD patients (n = 27, including 12 FTLD-Tau and 15 FTLD-TDP) and controls (n = 15) using the same ELISA. Results: APOL1 levels were significantly increased in FTLD post-mortem tissue compared to controls as measured by immunohistochemistry, WB, and ELISA. However, no differences between the pathological subtypes were observed. APOL1 immunoreactivity was present in neuronal and glial cells but did not co-localize with pTau or pTDP-43. CSF APOL1 levels were comparable between FTD patients and controls and between pathological subtypes. Conclusion: APOL1 is upregulated in FTLD pathology irrespective of the subtypes, indicating a role of this novel protein in FTD pathophysiology. The APOL1 levels detected in brain tissue were not mirrored in the CSF, limiting its potential as a specific FTD biofluid-based biomarker using our current immunoassay

    A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias

    No full text
    BACKGROUND: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. OBJECTIVE: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. METHODS: We included 135 patients from the Center for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer's disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. RESULTS: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy (FTD versus MCI-AD: area under the curve (AUC) [95% CI] = 0.89 [0.81-0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71-0.93]; FTD versus OND: AUC = 0.80 [0.70-0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47-0.74, p < 0.05). CONCLUSION: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders

    Thimet oligopeptidase as a potential CSF biomarker for Alzheimer's disease: A cross‐platform validation study

    Get PDF
    Abstract INTRODUCTION Our previous antibody‐based cerebrospinal fluid (CSF) proteomics study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aβ) neuropeptidase, was increased in mild cognitive impairment with amyloid pathology (MCI‐Aβ+) and Alzheimer's disease (AD) dementia compared with controls and dementia with Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific biomarker for AD. We aimed to develop THOP1 immunoassays for large‐scale analysis and validate our proteomics findings in two independent cohorts. METHODS We developed in‐house CSF THOP1 immunoassays on automated Ella and Simoa platforms. The performance of the different assays were compared using Passing–Bablok regression analysis in a subset of CSF samples from the discovery cohort (n = 72). Clinical validation was performed in two independent cohorts (cohort 1: n = 200; cohort 2: n = 165) using the Ella platform. RESULTS THOP1 concentrations moderately correlated between proteomics analysis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was increased in MCI‐Aβ+ (>1.3‐fold) and AD (>1.2‐fold) compared with controls; and between MCI‐Aβ+ and DLB (>1.2‐fold). Higher THOP1 concentrations were detected in AD compared with DLB only when both cohorts were analyzed together. In both cohorts, THOP1 correlated with CSF total tau (t‐tau), phosphorylated tau (p‐tau), and Aβ40 (Rho > 0.540) but not Aβ42. DISCUSSION Validation of our proteomics findings underpins the potential of CSF THOP1 as an early specific biomarker associated with AD pathology. The use of antibody‐based platforms in both the discovery and validation phases facilitated the translation of proteomics findings, providing an additional workflow that may accelerate the development of biofluid‐based biomarkers

    CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer\u2032s disease

    No full text
    Abstract: Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n=109), Alzheimers disease (AD, n=235) and cognitively unimpaired controls (n=190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities

    CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease

    No full text
    Abstract Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities

    CSF proteome profiling across the Alzheimer’s disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels

    No full text
    Development of disease-modifying therapies against Alzheimer’s disease (AD) requires biomarkers reflecting the diverse pathological pathways specific for AD. We measured 665 proteins in 797 cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment with abnormal amyloid (MCI(Aβ+): n = 50), AD-dementia (n = 230), non-AD dementias (n = 322) and cognitively unimpaired controls (n = 195) using proximity ligation-based immunoassays. Here we identified &gt;100 CSF proteins dysregulated in MCI(Aβ+) or AD compared to controls or non-AD dementias. Proteins dysregulated in MCI(Aβ+) were primarily related to protein catabolism, energy metabolism and oxidative stress, whereas those specifically dysregulated in AD dementia were related to cell remodeling, vascular function and immune system. Classification modeling unveiled biomarker panels discriminating clinical groups with high accuracies (area under the curve (AUC): 0.85–0.99), which were translated into custom multiplex assays and validated in external and independent cohorts (AUC: 0.8–0.99). Overall, this study provides novel pathophysiological leads delineating the multifactorial nature of AD and potential biomarker tools for diagnostic settings or clinical trials.</p

    CSF proteome profiling across the Alzheimer’s disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels

    No full text
    Development of disease-modifying therapies against Alzheimer’s disease (AD) requires biomarkers reflecting the diverse pathological pathways specific for AD. We measured 665 proteins in 797 cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment with abnormal amyloid (MCI(Aβ+): n = 50), AD-dementia (n = 230), non-AD dementias (n = 322) and cognitively unimpaired controls (n = 195) using proximity ligation-based immunoassays. Here we identified >100 CSF proteins dysregulated in MCI(Aβ+) or AD compared to controls or non-AD dementias. Proteins dysregulated in MCI(Aβ+) were primarily related to protein catabolism, energy metabolism and oxidative stress, whereas those specifically dysregulated in AD dementia were related to cell remodeling, vascular function and immune system. Classification modeling unveiled biomarker panels discriminating clinical groups with high accuracies (area under the curve (AUC): 0.85–0.99), which were translated into custom multiplex assays and validated in external and independent cohorts (AUC: 0.8–0.99). Overall, this study provides novel pathophysiological leads delineating the multifactorial nature of AD and potential biomarker tools for diagnostic settings or clinical trials
    corecore