4 research outputs found
Chromosome studies in Orchidaceae from Argentina
Abstract The center of diversity of Argentinean orchids is in the northeast region of the country. Chromosome numbers and karyotype features of 43 species belonging to 28 genera are presented here
Chromosome studies in Orchidaceae from Argentina
The center of diversity of Argentinean orchids is in the northeast region of the country. Chromosome numbers and karyotype features of 43 species belonging to 28 genera are presented here. Five chromosome records are the first ones at the genus level; these taxa are Aspidogyne kuckzinskii (2n = 42), Eurystyles actinosophila (2n = 56), Skeptrostachys paraguayensis (2n = 46), Stigmatosema polyaden (2n = 40) and Zygostates alleniana (2n = 54). In addition, a chromosome number is presented for the first time for 15 species: Corymborkis flava (2n = 56), Cyclopogon callophyllus (2n = 28), C. oliganthus (2n = 64), Cyrtopodium hatschbachii (2n = 46), C. palmifrons (2n = 46), Galeandra beyrichii (2n = 54), Habenaria bractescens (2n = 44), Oncidium edwallii (2n = 42), O. fimbriatum (2n = 56), O. pubes (2n = 84), O. riograndense (2n = 56), Pelexia ekmanii (2n = 46), P. lindmanii (2n = 46) and Warrea warreana (2n = 48). For Oncidium longicornu (2n = 42), O. divaricatum (2n = 56) and Sarcoglottis fasciculata (2n = 46+1B?, 46+3B?), a new cytotype was found. Chromosome data support phylogenetic relationships proposed by previous cytological, morphologic and molecular analyses, and in all the cases cover some gaps in the South American literature on orchid chromosomes
Alternative Evolutionary Pathways in <i>Paspalum</i> Involving Allotetraploidy, Sexuality, and Varied Mating Systems
The genetic systems of Paspalum species have not been extensively studied. We analyzed the ploidy, reproductive mode, mating system, and fertility of four Paspalum species—Paspalum durifolium, Paspalum ionanthum, Paspalum regnellii, and Paspalum urvillei. An analysis of 378 individuals from 20 populations of northeastern Argentina was conducted. All populations of the four Paspalum species were pure tetraploid and had a sexual and stable reproductive mode. However, some populations of P. durifolium and P. ionanthum showed low levels of apospory. Populations of P. durifolium and P. ionanthum had low seed sets under self-pollination but were fertile under open pollination, showing that self-incompatibility likely caused self-sterility. In contrast, populations of P. regnellii or P. urvillei showed no evidence of apospory, and seed sets in both self- and open pollination conditions were high, suggesting that they are self-compatible due to the absence of pollen–pistil molecular incompatibility mechanisms. The evolutionary origin of the four Paspalum species could explain these differences. This study supplies valuable insights into the genetic systems of Paspalum species, which could have implications for their conservation and management