5 research outputs found

    Geohazards analysis of Pisa tunnel in a fractured incompetent rocks in Zagros Mountains, Iran.

    Get PDF
    The Pisa 2 tunnel with 740 m in length and 20° N trend is located along the Kazerun fault zone in Simply Folded Belt of Zagros, Iran. This tunnel has been excavated in the fractured incompetent marl layers with high expansive pressure of up to 2 kg/cm2. In this study, the geological hazards along the tunnel have been recognized and categorized. This study revealed that, in the long-term usage of the tunnel, the lining did not endure against the loading and the secondary leakages. It is mainly attributed due to the non-efficiencies of drainage and isolation systems in the tunnel site. Therefore, it caused asphalt damage, drainage damage, and wall distortion. FLAC3D software has been used in this research. We conducted various analyses for pre-excavation stress states, syn-excavation, and post-excavation strain states. The results showed no indication of instability and critical deformations during the excavation time. It also revealed that due to the non-efficiencies of drainage and isolation systems against secondary leakages and consequently marl expansion, the volumetric and shear strains (i.e., expansions and displacements) have exceeded from the critical states of strain along the tunnel. For various remedy purpose, this paper attempted several measures that can be taken in order to modify the drainage and isolation systems along the tunnel area. The reconstruction of drainage systems with suitable reinforced concrete and adequate slope has been proposed. The width of channel and isolation of backside of lining and implementation of multi-order outlets (i.e., backside of lining) for draining of groundwater into where the main drainage systems are located in the tunnel gallery were suggested

    Article Upliftment Estimation of the Zagros Transverse Fault in Iran Using Geoinformatics Technology

    No full text
    Abstract: The Izeh fault zone is a transverse fault zone with dextral strike slip (and some reverse component) in the Zagros Mountains (Iran). It causes some structural deformations. This fault zone is acting as eastern boundary of Dezful Embayment and forms subsidence of the embayment. The fault has been recognized using remote sensing techniques in conjunction with surface and subsurface analyses. The stratigraphic columns have been prepared in 3D form using Geographical Information System (GIS) tools on the basis of structural styles and thickness of lithologic units. Height differences for erosion levels have been calculated in stratigraphic columns with respect to the subsidence in the Dezful Embayment, which is related to Izeh zone. These height differences have been estimated to be 5,430 m in the central part (and 5,844 m in the northern part) from the Eocene to recent times. This study shows that comparison of the same erosion levels in Asmari-Pabdeh formation boundaries for interior and eastern block of the Izeh fault zone with the absolute uplifting due to the fault activity which is about 533 m per million years in the Izeh zone. The present study reveals that subtracting the absolute uplifting from total subsidence; the real subsidence of Dezful embayment from Eocene to Recent is 0.13 mm/year

    Fault Control on Copper Depositsin the Sar Cheshmeh Area Indicated by Remote Sensing & Geographic Information Systems (GIS

    No full text
    Introduction The Sar Cheshmeh copper deposit and indications of other deposits are located in the Dehaj-Sarduieh belt in the Kerman region (Khadem and Nedimovic, 1973). This belt is one of the most important provinces of Cu mineralization in Iran, with approximately 300 Cu deposits and prospects, includingtwenty of the porphyry copper type (Ghorbani, 2013). This belt, 300 km in length and 30–45 km width, is situated in the southern part of the Uramia-Dokhtar volcanic belt in central Iran (Shafiei, 2010). Zarasvandi (2004) has proposed that faulting has played a role in the location of copper deposition in this area. Methods of Investigation In order to check Zarasvandi’s hypothesis, the spatial relationship between faults and Cu deposits was investigated using remote sensing and GIS techniques together with field investigations in the Sar Cheshmeh area. The the following steps were used in this research: 1. Review of available data 2. Surface geology field studies 3. Preparation of digital overlay of Copper occurrences 4. Analysis of the relationshipof faulting to Copper occurrences Using remote sensing techniques, a geometrically corrected satellite image was filtered with high pass and Sharpen Edge filters to detect possible lineaments (Lillesand and Keifer, 2008; Sabins, 1996). Directional filters (45º, 90º, 135º and 180º) were then applied to the processed image to enhance the linear structures. Subsequently,the major lineaments were documented in the field as major and minor faults (Safari et al., 2011). Four main faults, designated as the Rafsanjan, Mani, Gaud-e-Ahmar and Sar Cheshmeh faultswere determined to be major. These faults were digitized and overlaid on other data layers in GIS environment. The strikes, dips, striae and directions of movementof the faultswere measured at 20 locations in the field. Structural analyses were done with Rose diagrams, calculation of P-axes and preparation of a structural map. Copper occurrences on the mineral distribution map of Lotfi, et al. (1993) were used in this study and the locations of somecopper occurrences were determined in the field using GPS. The locations and main characteristics of the copper occurrences were entered into a GIS map. Finally, aniso-fracture map, was prepared using the GIS environment based onfault lengths within a 1000 ×1000 mgrid and on the buffer map of ore occurrences relative to faults. The copper occurrence locations were overlaid on these prepared maps and the relationship between faults and ore occurrences locations was analyzed. v Results This research indicates that: 1.The faults in the Sar Cheshmeh area trend predominantly 090°-110°, 130°-150°, 050°-070° and 170°-190°. 2.The data show that three major NW- trendingfaults, the Mani, Gaud-e-Ahmar and Rafsanjan faults show right-lateral strike-slip movement and the two major E-W trending Sar Cheshmeh and Darreh Zar faults have left-lateral strike-slip displacements. 3. The control of the calculated P-axes shows that at least two older movements have happened along these faults. Discussion The results show that the main faults did not directly control the locations of the mineralized porphyries and veins, but that rather the locations are due tothe second-order faults. Also, the saturated occurrence locations have the closer relationship with main faults and most indexes are located near the Rafsanjan fault and its second-order faults. References Ghorbani, M., 2013. The Economic Geology of Iran: Mineral Deposits and Natural Resources. Springer Science, Business Media Dordrecht, Heidelberg, 581 pp. Khadem, N. and Nedimovic, R., 1973. Exploration for ore deposits in Kerman Region. Geological Survey of Iran, Report Yu/53, 247 pp (in Persian). Lillesand, T.M. and Kiefer, R.W., 2008. Remote sensing and image interpretation. John Wiley and Sons, New York, 756 pp. Lotfi, M., Sadeghi, M.M. and Omrani, S.J., 1993. Mineral distribution map of Iran, scale: 1/1000000. Geologic Survey of Iran. Sabins, F.F., 1996. Remote sensing principle and interpretation. Macmillan Education Australia, New York, 494 pp. Safari, H., Pirasteh, S. and Shattri, B.M., 2011. Role of Kazerun Fault for Localizing Oil Seepage in the Zagros Mountains, Iran: an Application of GiT. International Journal of Remote sensing, 32(1): 1-16. Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implication. Ore Geology Reviews, 38: 27-36. Zarasvandi, A.R., 2004. Geology and genesis of the Darreh-Zerreshk and Ali-Abad copper deposits, Southwest of Yazd, based on fluid inclusion and isotope studies. Ph.D. Thesis, Shiraz University, Shiraz, Iran, 280 pp. <br

    Use of Remote Sensing Data and GIS Tools for Seismic Hazard Assessment for Shallow Oilfields and its Impact on the Settlements at Masjed-i-Soleiman Area, Zagros Mountains, Iran

    No full text
    Masjed-i-Soleiman (MIS) is situated in the northern part of the Dezful embayment, which is in the Zagros fold–thrust belt with high seismic activities. MIS faces a shallow buried anticline, formed by the shallowest oilfield with a thick gas cap. The cap rocks of this oilfield are highly fractured, which has resulted in leakages from the gas cap. In this paper, we have used remote sensing techniques and image interpretation for the identification of the Niayesh, Lahbari, Andika and MIS fault zones in the studied area. Further, the study exploited seismic potential mapping using the remote sensing techniques. The relationships between the structural controls and localized gas leakage are assessed within the GIS environment. Additionally, field observation data corroborated that the leakages (and seepages) are smashed within the intersection of Niayesh and MIS fault zone, which belongs to the high fractured hinge zone of the MIS anticline. As a result, the reactivation of these active faults may cause large earthquakes with a maximum magnitude of between 6.23 &lt; Ms &lt; 7.05 (Richter scale) and maximum horizontal acceleration 0.26 &lt; a &lt; 0.55 g. Finally, the authors concluded that this anticipated earthquake may cause large scale fracturing of cap rocks, releasing a large volume of H2S gas from the uppermost layer of the reservoir
    corecore