63 research outputs found

    Load Frequency Control for Hydropower Plants using PID Controller

    Get PDF
    Many development republics began to get rid of conventional energy and towards to use renewable energy like hydropower system, solar cells and wind turbines as soon as possible. Load Frequency Control (LFC) problem is coming to be the main topics for mentioning schemes due to not corresponding between main power system inputs such as change load demand and change in speed turbine settings. This paper illustrates a selftuning control of hydropower system that suggested and confirmed under Automatic Generation Control (AGC) in power scheme. The suggested power system involves one single area. The suggested self-tuning control system is employed in performing the automatic generation control for load frequency control request and compared it with conventional control structure. The power system dynamic modeling has regularly built in several essential parameters which have a significant influence According to frequency limitation. The main problem with all controllers is an exaggerated reaction to minor errors, producing the system to oscillate. The output response results for hydropower system obviously proved the benefit of using maximum load demand by tuning PID controller. Whereas, tuning PID controller has got properly more rapid output response and minimal overshoot

    Load Frequency Control for Hydropower Plants using PID Controller

    Get PDF
    Many development republics began to get rid of conventional energy and towards to use renewable energy like hydropower system, solar cells and wind turbines as soon as possible. Load Frequency Control (LFC) problem is coming to be the main topics for mentioning schemes due to not corresponding between main power system inputs such as change load demand and change in speed turbine settings. This paper illustrates a selftuning control of hydropower system that suggested and confirmed under Automatic Generation Control (AGC) in power scheme. The suggested power system involves one single area. The suggested self-tuning control system is employed in performing the automatic generation control for load frequency control request and compared it with conventional control structure. The power system dynamic modeling has regularly built in several essential parameters which have a significant influence According to frequency limitation. The main problem with all controllers is an exaggerated reaction to minor errors, producing the system to oscillate. The output response results for hydropower system obviously proved the benefit of using maximum load demand by tuning PID controller. Whereas, tuning PID controller has got properly more rapid output response and minimal overshoot

    Nanocrystalline Nickel Oxide (NiO) Thin Films Grown on Quartz Substrates: Influence Of Annealing Temperatures

    Get PDF
    In the present investigation, nanocrystalline NiO thin films were prepared by thermal oxidation annealing of DC magnetron sputtered Ni thin films on quartz substrates. The effect of annealing temperature on the films structural, morphological and optical properties was investigated. The XRD analysis shows that all prepared films were of NiO with cubic structure and (200) orientation. The thickness of NiO films was in range of 40-100 nm. The average crystallite size is found to increase from 16 to 36 nm and the optical band gap energy decreases from 3.62 to 3.38 eV by increasing the annealing temperature from 400 • C to 600 • C. The AFM and SEM results show that the annealing temperature effectively influences the surface morphology of the films

    Optical Properties of Nano-Crystalline Zirconia Thin Films Prepared at Different Post-Oxidation Annealing Times

    No full text
    The zirconia (ZrOâ‚‚) is one of the transition-metal oxides with most excellent optical properties which thus attracts great attention in optical engineering. A variety of methods were used for deposition of ZrOâ‚‚ thin films on different substrates. In the present work, homogenous, transparent nanocrystalline zirconia thin films were grown by thermal oxidation of zirconium (Zr) thin films deposited on quartz substrate using DC magnetron sputtering technique. The objective of this study is to reveal the effect of thermal oxidation time on structural and optical properties of deposited films. The XRD results revealed the formation of single phase ZrOâ‚‚ with tetragonal structure in the films at different thermal oxidation times. The optical constant of ZrOâ‚‚ thin films was calculated from the UV-visible transmission spectra. It was found that the increase of thermal oxidation time leads to the increase of transmittance and optical band gap energy of the films. The AFM results showed that thermal oxidation time influences the surface morphology of the films

    Influence of copper thin film as an electrode on the DC electrical breakdown in the presence of Ar and air

    No full text
    Electrical breakdown for low pressure argon gas and air, using copper thin films as the electrodes, was investigated. A specially designed cathode was built from copper thin film deposited on glass by a magnetron sputtering system creating the breakdown between those electrodes. The left side of Paschen’s curve and ionization coefficient η as well as the effective electron emission coefficient γ was obtained with respect to the variation of reduced electric fields for argon gas and air for different thin films thicknesses. It is concluded that reducing the thin film thickness as an electrode leads to a decrease of breakdown voltage and amplifying secondary electron emission. In addition, the influence of the gas type on dependence of breakdown characteristics on the electrode thickness was investigated

    Synthesis of Nickel-Doped TiOâ‚‚ Thin Films and Their Structural and Optical Properties at Different Annealing Temperatures

    No full text
    Titanium oxide (TiO₂) and nickel-doped TiO₂ thin films were deposited onto glass substrates by reactive DC magnetron sputtering technique at different oxygen contents. Then, prepared films were annealed at temperatures of 300 and 500°C. Influence of O₂/Ar ratio, nickel doping and annealing temperature on structural, morphological and optical properties of TiO₂ thin films were studied and discussed. The XRD analysis results have confirmed the amorphous nature of the films. The results show that increase of annealing temperature and oxygen content in argon-oxygen gas mixture have lead to an increase of films transparency. By doping the TiO₂ with nickel the optical band gap energy has slightly decreased. AFM analysis results have shown that the surface morphology of films is effectively influenced by annealing temperature
    • …
    corecore