32 research outputs found

    Mutation Analysis of NR5A1 Encoding Steroidogenic Factor 1 in 77 Patients with 46, XY Disorders of Sex Development (DSD) Including Hypospadias

    Get PDF
    BACKGROUND: Mutations of the NR5A1 gene encoding steroidogenic factor-1 have been reported in association with a wide spectrum of 46,XY DSD (Disorder of Sex Development) phenotypes including severe forms of hypospadias. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the frequency of NR5A1 gene mutations in a large series of patients presenting with 46,XY DSD and hypospadias. Based on their clinical presentation 77 patients were classified either as complete or partial gonadal dysgenesis (uterus seen at genitography and/or surgery, n = 11), ambiguous external genitalia without uterus (n = 33) or hypospadias (n = 33). We identified heterozygous NR5A1 mutations in 4 cases of ambiguous external genitalia without uterus (12.1%; p.Trp279Arg, pArg39Pro, c.390delG, c140_141insCACG) and a de novo missense mutation in one case with distal hypospadias (3%; p.Arg313Cys). Mutant proteins showed reduced transactivation activity and mutants p.Arg39Pro and p.Arg313Cys did not synergize with the GATA4 cofactor to stimulate reporter gene activity, although they retained their ability to physically interact with the GATA4 protein. CONCLUSIONS/SIGNIFICANCE: Mutations in NR5A1 were observed in 5/77 (6.5%) cases of 46,XY DSD including hypospadias. Excluding the cases of 46,XY gonadal dysgenesis the incidence of NR5A1 mutations was 5/66 (7.6%). An individual with isolated distal hypopadias carried a de novo heterozygous missense mutation, thus extending the range of phenotypes associated with NR5A1 mutations and suggesting that this group of patients should be screened for NR5A1 mutations

    Knockdown of SF-1 and RNF31 Affects Components of Steroidogenesis, TGFβ, and Wnt/β-catenin Signaling in Adrenocortical Carcinoma Cells

    Get PDF
    The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF) β and Wnt/β-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma

    Identification of nine new susceptibility loci for endometrial cancer

    Get PDF
    Endometrial cancer is the most commonly diagnosed cancer of the female reproductive tract in developed countries. Through genome-wide association studies (GWAS), we have previously identified eight risk loci for endometrial cancer. Here, we present an expanded meta-analysis of 12,906 endometrial cancer cases and 108,979 controls (including new genotype data for 5624 cases) and identify nine novel genome-wide significant loci, including a locus on 12q24.12 previously identified by meta-GWAS of endometrial and colorectal cancer. At five loci, expression quantitative trait locus (eQTL) analyses identify candidate causal genes; risk alleles at two of these loci associate with decreased expression of genes, which encode negative regulators of oncogenic signal transduction proteins (SH2B3 (12q24.12) and NF1 (17q11.2)). In summary, this study has doubled the number of known endometrial cancer risk loci and revealed candidate causal genes for future study

    A common variant at the 14q32 endometrial cancer risk locus activates AKT1 through YY1 binding

    No full text
    A recent meta-analysis of multiple genome-wide association and follow-up endometrial cancer case-control datasets identified a novel genetic risk locus for this disease at chromosome 14q32.33. To prioritize the functional SNP(s) and target gene(s) at this locus, we employed an in silico fine-mapping approach using genotyped and imputed SNP data for 6,608 endometrial cancer cases and 37,925 controls of European ancestry. Association and functional analyses provide evidence that the best candidate causal SNP is rs2494737. Multiple experimental analyses show that SNP rs2494737 maps to a silencer element located within AKT1, a member of the PI3K/AKT/MTOR intracellular signaling pathway activated in endometrial tumors. The rs2494737 risk A allele creates a YY1 transcription factor-binding site and abrogates the silencer activity in luciferase assays, an effect mimicked by transfection of YY1 siRNA. Our findings suggest YY1 is a positive regulator of AKT1, mediating the stimulatory effects of rs2494737 increasing endometrial cancer risk. Identification of an endometrial cancer risk allele within a member of the PI3K/AKT signaling pathway, more commonly activated in tumors by somatic alterations, raises the possibility that well tolerated inhibitors targeting this pathway could be candidates for evaluation as chemopreventive agents in individuals at high risk of developing endometrial cancer

    Dysfunction of the WT1-MEG3 Signaling Promotes AML Leukemogenesis via p53 Dependent and Independent Pathways

    No full text
    Long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis, exemplified by the recent finding that lncRNA maternally expressed gene 3 (MEG3) inhibits tumor growth in a p53-dependent manner. Acute myeloid leukemia (AML) is the most common malignant myeloid disorder in adults, and TP53 mutations or loss are frequently detected in patients with therapy-related AML or AML with complex karyotype. Here, we reveal that MEG3 is significantly downregulated in AML and suppresses leukemogenesis not only in a p53-dependent, but also a p53-independent manner. In addition, MEG3 is proven to be transcriptionally activated by Wilms’ tumor 1 (WT1), dysregulation of which by epigenetic silencing or mutations is causally involved in AML. Therefore MEG3 is identified as a novel target of the WT1 molecule. Ten–eleven translocation-2 (TET2) mutations frequently occur in AML and significantly promote leukemogenesis of this disorder. In our study, TET2, acting as a cofactor of WT1, increases MEG3 expression. Taken together, our work demonstrates that TET2 dysregulated WT1-MEG3 axis significantly promotes AML leukemogenesis, paving a new avenue for diagnosis and treatment of AML patients
    corecore