4 research outputs found

    Development of the natural working fluid‐based refrigeration system for domestic scale freeze‐dryer

    Get PDF
    In this work, the analysis of the refrigeration system designed for the FrostX 10 freeze‐dryer is presented. The main goal of this study was to experimentally investigate the reference R452a freeze‐dryer and prepare recommendations for a machine based on the R290 refrigeration unit. In order to guarantee the temperature requirements and efficient operation of that unit, the analysis of suitable natural refrigerants was performed. Consequently, propane (R290) was selected. In addition, a number of modifications were introduced for the prototype system. System analysis showed that the replacement of the refrigerant in the existing system improves the system energy efficiency by approximately 18%. During the experimental campaign of the basic refrigeration unit, an unstable operation of the evaporator was found. The concept of a new cooling system for a prototype device was presented. The configuration and type of heat exchanger to maximise the performance of the ice trap of the freeze‐dryer were proposed.Development of the natural working fluid‐based refrigeration system for domestic scale freeze‐dryeracceptedVersio

    Energy Systems of Complex Buildings

    No full text
    XIV, 346 p.online resource

    Development of the natural working fluid‐based refrigeration system for domestic scale freeze‐dryer

    Get PDF
    In this work, the analysis of the refrigeration system designed for the FrostX 10 freeze‐dryer is presented. The main goal of this study was to experimentally investigate the reference R452a freeze‐dryer and prepare recommendations for a machine based on the R290 refrigeration unit. In order to guarantee the temperature requirements and efficient operation of that unit, the analysis of suitable natural refrigerants was performed. Consequently, propane (R290) was selected. In addition, a number of modifications were introduced for the prototype system. System analysis showed that the replacement of the refrigerant in the existing system improves the system energy efficiency by approximately 18%. During the experimental campaign of the basic refrigeration unit, an unstable operation of the evaporator was found. The concept of a new cooling system for a prototype device was presented. The configuration and type of heat exchanger to maximise the performance of the ice trap of the freeze‐dryer were proposed

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    No full text
    The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, E>100GeV E > 100 G e V ) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system
    corecore