957 research outputs found
Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors
Detergents enable the purification of membrane proteins and are indispensable reagents instructural biology. Even though a large variety of detergents have been developed in the lastcentury, the challenge remains to identify guidelines that allowfine-tuning of detergents forindividual applications in membrane protein research. Addressing this challenge, here weintroduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS)reveals that the modular OGD architecture offers the ability to control protein purificationand to preserve interactions with native membrane lipids during purification. In addition to abroad range of bacterial membrane proteins, OGDs also enable the purification and analysisof a functional G-protein coupled receptor (GPCR). Moreover, given the modular design ofthese detergents, we anticipatefine-tuning of their properties for specific applications instructural biology. Seen from a broader perspective, this represents a significant advance forthe investigation of membrane proteins and their interactions with lipids
Upper bounds for the secure key rate of decoy state quantum key distribution
The use of decoy states in quantum key distribution (QKD) has provided a
method for substantially increasing the secret key rate and distance that can
be covered by QKD protocols with practical signals. The security analysis of
these schemes, however, leaves open the possibility that the development of
better proof techniques, or better classical post-processing methods, might
further improve their performance in realistic scenarios. In this paper, we
derive upper bounds on the secure key rate for decoy state QKD. These bounds
are based basically only on the classical correlations established by the
legitimate users during the quantum communication phase of the protocol. The
only assumption about the possible post-processing methods is that double click
events are randomly assigned to single click events. Further we consider only
secure key rates based on the uncalibrated device scenario which assigns
imperfections such as detection inefficiency to the eavesdropper. Our analysis
relies on two preconditions for secure two-way and one-way QKD: The legitimate
users need to prove that there exists no separable state (in the case of
two-way QKD), or that there exists no quantum state having a symmetric
extension (one-way QKD), that is compatible with the available measurements
results. Both criteria have been previously applied to evaluate single-photon
implementations of QKD. Here we use them to investigate a realistic source of
weak coherent pulses. The resulting upper bounds can be formulated as a convex
optimization problem known as a semidefinite program which can be efficiently
solved. For the standard four-state QKD protocol, they are quite close to known
lower bounds, thus showing that there are clear limits to the further
improvement of classical post-processing techniques in decoy state QKD.Comment: 10 pages, 3 figure
Security proof of a three-state quantum key distribution protocol without rotational symmetry
Standard security proofs of quantum key distribution (QKD) protocols often
rely on symmetry arguments. In this paper, we prove the security of a
three-state protocol that does not possess rotational symmetry. The three-state
QKD protocol we consider involves three qubit states, where the first two
states, |0_z> and |1_z>, can contribute to key generation and the third state,
|+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been
proposed and implemented experimentally in some frequency-based QKD systems
where the three states can be prepared easily. Thus, by founding on the
security of this three-state protocol, we prove that these QKD schemes are, in
fact, unconditionally secure against any attacks allowed by quantum mechanics.
The main task in our proof is to upper bound the phase error rate of the qubits
given the bit error rates observed. Unconditional security can then be proved
not only for the ideal case of a single-photon source and perfect detectors,
but also for the realistic case of a phase-randomized weak coherent light
source and imperfect threshold detectors. Our result on the phase error rate
upper bound is independent of the loss in the channel. Also, we compare the
three-state protocol with the BB84 protocol. For the single-photon source case,
our result proves that the BB84 protocol strictly tolerates a higher quantum
bit error rate than the three-state protocol; while for the coherent-source
case, the BB84 protocol achieves a higher key generation rate and secure
distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column
Quantum rotor theory of spinor condensates in tight traps
In this work, we theoretically construct exact mappings of many-particle
bosonic systems onto quantum rotor models. In particular, we analyze the rotor
representation of spinor Bose-Einstein condensates. In a previous work it was
shown that there is an exact mapping of a spin-one condensate of fixed particle
number with quadratic Zeeman interaction onto a quantum rotor model. Since the
rotor model has an unbounded spectrum from above, it has many more eigenstates
than the original bosonic model. Here we show that for each subset of states
with fixed spin F_z, the physical rotor eigenstates are always those with
lowest energy. We classify three distinct physical limits of the rotor model:
the Rabi, Josephson, and Fock regimes. The last regime corresponds to a
fragmented condensate and is thus not captured by the Bogoliubov theory. We
next consider the semiclassical limit of the rotor problem and make connections
with the quantum wave functions through use of the Husimi distribution
function. Finally, we describe how to extend the analysis to higher-spin
systems and derive a rotor model for the spin-two condensate. Theoretical
details of the rotor mapping are also provided here.Comment: 10 pages, 2 figure
Large collective Lamb shift of two distant superconducting artificial atoms
Virtual photons can mediate interaction between atoms, resulting in an energy
shift known as a collective Lamb shift. Observing the collective Lamb shift is
challenging, since it can be obscured by radiative decay and direct atom-atom
interactions. Here, we place two superconducting qubits in a transmission line
terminated by a mirror, which suppresses decay. We measure a collective Lamb
shift reaching 0.8% of the qubit transition frequency and exceeding the
transition linewidth. We also show that the qubits can interact via the
transmission line even if one of them does not decay into it.Comment: 7+5 pages, 4+2 figure
Probing the quantum vacuum with an artificial atom in front of a mirror
Quantum fluctuations of the vacuum are both a surprising and fundamental
phenomenon of nature. Understood as virtual photons flitting in and out of
existence, they still have a very real impact, \emph{e.g.}, in the Casimir
effects and the lifetimes of atoms. Engineering vacuum fluctuations is
therefore becoming increasingly important to emerging technologies. Here, we
shape vacuum fluctuations using a "mirror", creating regions in space where
they are suppressed. As we then effectively move an artificial atom in and out
of these regions, measuring the atomic lifetime tells us the strength of the
fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a
factor of 50 below what would be expected without the mirror, demonstrating
that we can hide the atom from the vacuum
Implementation of two-party protocols in the noisy-storage model
The noisy-storage model allows the implementation of secure two-party
protocols under the sole assumption that no large-scale reliable quantum
storage is available to the cheating party. No quantum storage is thereby
required for the honest parties. Examples of such protocols include bit
commitment, oblivious transfer and secure identification. Here, we provide a
guideline for the practical implementation of such protocols. In particular, we
analyze security in a practical setting where the honest parties themselves are
unable to perform perfect operations and need to deal with practical problems
such as errors during transmission and detector inefficiencies. We provide
explicit security parameters for two different experimental setups using weak
coherent, and parametric down conversion sources. In addition, we analyze a
modification of the protocols based on decoy states.Comment: 41 pages, 33 figures, this is a companion paper to arXiv:0906.1030
considering practical aspects, v2: published version, title changed in
accordance with PRA guideline
Is baryon number violated when electroweak strings intercommute?
We reexamine the self-helicity and the intercommutation of electroweak
strings. A plausible argument for baryon number conservation when electroweak
strings intercommute is presented. The connection between a segment of
electroweak strings and a sphaleron is also discussed.Comment: CALT-68-1948, 11 pages, 5 figures available upon request. Replaced
with revised version. (Request should be sent to [email protected]
- …