361 research outputs found
Crystal structure of the heterotrimeric integrin-binding region of laminin-111
Laminins are cell - adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminin s is poorly defined structurally. We report the crystal structure at 2.13 Å resolution of a minimal integrin - binding fragment of mouse laminin - 111, consisting of ~50 resid ues of α 1 β 1 γ 1 coiled coil and the first three lam inin G - like (LG) domains of the α 1 chain . The LG domains adopt a triangular arrangem ent, with the C - terminus of the coiled coil situated between LG1 and LG2. The critical integrin - binding glutamic acid residue in the γ 1 chain tail is surface - exposed and predicted to bind to the metal ion - dependent adhesion site in the integrin β 1 subunit. Additional contacts to the integrin are likely to be made by the LG1 and LG2 surfaces adjacent to the γ 1 chain tail, which are notably conserved and free of obstructing glycans
Tauroursodeoxycholic acid exerts anticholestatic effects by a cooperative cPKC alpha-/PKA-dependent mechanism in rat liver.
Objective: Ursodeoxycholic acid (UDCA) exerts anticholestatic effects in part by protein kinase C (PKC)-dependent mechanisms. Its taurine conjugate, TUDCA, is a cPKCa agonist. We tested whether protein kinase A (PKA) might contribute to the anticholestatic action of TUDCA via cooperative cPKCa-/PKA-dependent mechanisms
in taurolithocholic acid (TLCA)-induced cholestasis.
Methods: In perfused rat liver, bile flow was determined gravimetrically, organic anion secretion spectrophotometrically,
lactate dehydrogenase (LDH) release enzymatically, cAMP response-element binding protein (CREB) phosphorylation by immunoblotting, and cAMP by immunoassay. PKC/PKA inhibitors were tested radiochemically. In vitro phosphorylation of the conjugate export pump, Mrp2/Abcc2, was studied in rat hepatocytes and human Hep-G2 hepatoma cells.
Results: In livers treated with TLCA (10 mmol/l)+TUDCA (25 mmol/l), combined inhibition of cPKC by the cPKCselective
inhibitor Go¨6976 (100 nmol/l) or the nonselective PKC inhibitor staurosporine (10 nmol/l) and of PKA by H89 (100 nmol/l) reduced bile flow by 36% (p,0.05) and 48% (p,0.01), and secretion of the Mrp2/
Abcc2 substrate, 2,4-dinitrophenyl-S-glutathione, by 31% (p,0.05) and 41% (p,0.01), respectively; bile flow was
unaffected in control livers or livers treated with TUDCA only or TLCA+taurocholic acid. Inhibition of cPKC or PKA alone did not affect the anticholestatic action of TUDCA. Hepatic cAMP levels and CREB phosphorylation as readout of PKA activity were unaffected by the bile acids
tested, suggesting a permissive effect of PKA for the anticholestatic action of TUDCA. Rat and human hepatocellular Mrp2 were phosphorylated by phorbol ester pretreatment and recombinant cPKCa, nPKCe, and PKA, respectively, in a staurosporine-sensitive manner.
Conclusion: UDCA conjugates exert their anticholestatic action in bile acid-induced cholestasis in part via cooperative post-translational cPKCa-/PKA-dependent
mechanisms. Hepatocellular Mrp2 may be one target of bile acid-induced kinase activation
Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates
We theoretically analyze a Mach-Zehnder interferometer with trapped
condensates, and find that it is surprisingly stable against the nonlinearity
induced by inter-particle interactions. The phase sensitivity, which we study
for number squeezed input states, can overcome the shot noise limit and be
increased up to the Heisenberg limit provided that a Bayesian or
Maximum-Likelihood phase estimation strategy is used. We finally demonstrate
robustness of the Mach-Zehnder interferometer in presence of interactions
against condensate oscillations and a realistic atom counting error.Comment: 4 pages, 5 figures, minor revision
Atom interferometry with trapped Bose-Einstein condensates: Impact of atom-atom interactions
Interferometry with ultracold atoms promises the possibility of ultraprecise
and ultrasensitive measurements in many fields of physics, and is the basis of
our most precise atomic clocks. Key to a high sensitivity is the possibility to
achieve long measurement times and precise readout. Ultra cold atoms can be
precisely manipulated at the quantum level, held for very long times in traps,
and would therefore be an ideal setting for interferometry. In this paper we
discuss how the non-linearities from atom-atom interactions on one hand allow
to efficiently produce squeezed states for enhanced readout, but on the other
hand result in phase diffusion which limits the phase accumulation time. We
find that low dimensional geometries are favorable, with two-dimensional (2D)
settings giving the smallest contribution of phase diffusion caused by
atom-atom interactions. Even for time sequences generated by optimal control
the achievable minimal detectable interaction energy is on
the order of 0.001 times the chemical potential of the BEC in the trap. From
there we have to conclude that for more precise measurements with atom
interferometers more sophisticated strategies, or turning off the interaction
induced dephasing during the phase accumulation stage, will be necessary.Comment: 28 pages, 13 figures, extended and correcte
Biliary Bicarbonate Secretion Constitutes a Protective Mechanism against Bile Acid-Induced Injury in Man
Background: Cholangiocytes expose a striking resistance against bile acids: while other cell types, such as hepatocytes, are susceptible to bile acid-induced toxicity and apoptosis already at micromolar concentrations, cholangiocytes are continuously exposed to millimolar concentrations as present in bile. We present a hypothesis suggesting that biliary secretion of HCO(3)(-) in man serves to protect cholangiocytes against bile acid-induced damage by fostering the deprotonation of apolar bile acids to more polar bile salts. Here, we tested if bile acid-induced toxicity is pH-dependent and if anion exchanger 2 (AE2) protects against bile acid-induced damage. Methods: A human cholangiocyte cell line was exposed to chenodeoxycholate (CDC), or its glycine conjugate, from 0.5 mM to 2.0 mM at pH 7.4, 7.1, 6.7 or 6.4, or after knockdown of AE2. Cell viability and apoptosis were determined by WST and caspase-3/-7 assays, respectively. Results: Glycochenodeoxycholate (GCDC) uptake in cholangiocytes is pH-dependent. Furthermore, CDC and GCDC (pK(a) 4-5) induce cholangiocyte toxicity in a pH-dependent manner: 0.5 mM CDC and 1 mM GCDC at pH 7.4 had no effect on cell viability, but at pH 6.4 decreased viability by >80% and increased caspase activity almost 10- and 30-fold, respectively. Acidification alone had no effect. AE2 knockdown led to 3- and 2-fold enhanced apoptosis induced by 0.75 mM CDC or 2 mM GCDC at pH 7.4. Discussion: These data support our hypothesis of a biliary HCO(3)(-) umbrella serving to protect human cholangiocytes against bile acid-induced injury. AE2 is a key contributor to this protective mechanism. The development and progression of cholangiopathies, such as primary biliary cirrhosis, may be a consequence of genetic and acquired functional defects of genes involved in maintaining the biliary HCO(3)(-) umbrella. Copyright (C) 2011 S. Karger AG, Base
Phase Estimation from Atom Position Measurements
We study the measurement of the position of atoms as a means to estimate the
relative phase between two Bose-Einstein condensates. First, we consider
atoms released from a double-well trap, forming an interference pattern, and
show that a simple least-squares fit to the density gives a shot-noise limited
sensitivity. The shot-noise limit can instead be overcome by using correlation
functions of order or larger. The measurement of the
-order correlation function allows to estimate the relative phase
at the Heisenberg limit. Phase estimation through the measurement of the
center-of-mass of the interference pattern can also provide sub-shot-noise
sensitivity. Finally, we study the effect of the overlap between the two clouds
on the phase estimation, when Mach-Zehnder interferometry is performed in a
double-well.Comment: 20 pages, 6 figure
Massive creation of entangled exciton states in semiconductor quantum dots
An intense laser pulse propagating in a medium of inhomogeneously broadened
quantum dots massively creates entangled exciton states. After passage of the
pulse all single-exciton states remain unpopulated (self-induced transparency)
whereas biexciton coherence (exciton entanglement) is generated through
two-photon transitions. We propose several experimental techniques for the
observation of such unexpected behavior
Spin flip lifetimes in superconducting atom chips: BCS versus Eliashberg theory
We investigate theoretically the magnetic spin-flip transitions of neutral
atoms trapped near a superconducting slab. Our calculations are based on a
quantum-theoretical treatment of electromagnetic radiation near dielectric and
metallic bodies. Specific results are given for rubidium atoms near a niobium
superconductor. At the low frequencies typical of the atomic transitions, we
find that BCS theory greatly overestimates coherence effects, which are much
less pronounced when quasiparticle lifetime effects are included through
Eliashberg theory. At 4.2 K, the typical atomic spin lifetime is found to be
larger than a thousand seconds, even for atom-superconductor distances of one
micrometer. This constitutes a large enhancement in comparison with normal
metals.Comment: 10 pages, 4 figure
Molecular mechanism of decision-making in glycosaminoglycan biosynthesis
Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS
Shapiro effect in atomchip-based bosonic Josephson junctions
We analyze the emergence of Shapiro resonances in tunnel-coupled
Bose-Einstein condensates, realizing a bosonic Josephson junction. Our analysis
is based on an experimentally relevant implementation using magnetic double
well potentials on an atomchip. In this configuration the potential bias
(implementing the junction voltage) and the potential barrier (realizing the
Josephson link) are intrinsically coupled. We show that the dynamically driven
system exhibits significantly enhanced Shapiro resonances which will facilitate
experimental observation. To describe the systems response to the dynamic drive
we compare a single-mode Gross-Pitaevskii (GP) description, an improved
two-mode (TM) model and the self-consistent multi-configurational time
dependent Hartree for Bosons (MCTDHB) method. We show that in the case of
significant atom-atom interactions or strong driving, the spatial dynamics of
the involved modes have to be taken into account, and only the MCTDHB method
allows reliable predictions.Comment: 16 pages, 4 figure
- …