402 research outputs found

    Medium corrections to the CP-violating parameter in leptogenesis

    Full text link
    In two recent papers, arXiv:0909.1559 and arXiv:0911.4122, it has been demonstrated that one can obtain quantum corrected Boltzmann kinetic equations for leptogenesis using a top-down approach based on the Schwinger-Keldysh/Kadanoff-Baym formalism. These "Boltzmann-like" equations are similar to the ones obtained in the conventional bottom-up approach but differ in important details. In particular there is a discrepancy between the CP-violating parameter obtained in the first-principle derivation and in the framework of thermal field theory. Here we demonstrate that the two approaches can be reconciled if causal n-point functions are used in the thermal field theory approach. The new result for the medium correction to the CP-violating parameter is qualitatively different from the conventional one. The analogy to a toy model considered earlier enables us to write down consistent quantum corrected Boltzmann equations for thermal leptogenesis in the Standard Model (supplemented by three right-handed neutrinos) which include quantum statistical terms and medium corrected expressions for the CP-violating parameter.Comment: 13 pages, 9 figure

    Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter

    Full text link
    In the baryogenesis via leptogenesis scenario the self-energy contribution to the CP-violating parameter plays a very important role. Here, we calculate it in a simple toy model of leptogenesis using the Schwinger-Keldysh/Kadanoff-Baym formalism as starting point. We show that the formalism is free of the double-counting problem typical for the canonical Boltzmann approach. Within the toy model, medium effects increase the CP-violating parameter. In contrast to results obtained earlier in the framework of thermal field theory, the medium corrections are linear in the particle number densities. In the resonant regime quantum corrections lead to modified expressions for the CP-violating parameter and for the decay width. Most notably, in the maximal resonant regime the Boltzmann picture breaks down and an analysis in the full Kadanoff-Baym formalism is required.Comment: 28 pages, 14 figure

    Transition in the fractal geometry of Arctic melt ponds

    Get PDF
    pre-printDuring the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area-perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000m2, whose boundaries resemble space-filling curves, with D 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms

    Assessing pelagic palaeoenvironments using foraminiferal assemblages — A case study from the late Campanian Radotruncana calcarata Zone (Upper Cretaceous, Austrian Alps)

    Get PDF
    AbstractTwo upper Campanian sections in the Austrian Alps representing the north western Tethyan biogeographic realm from either sides of the Penninic Ocean (Alpine Tethys) have been examined aiming at a high-resolution assessment of foraminiferal assemblages: the Postalm section from the Northern Calcareous Alps (southern active margin) and the Oberhehenfeld section from the Ultrahelvetics (northern passive margin). This study focuses on plankton biostratigraphy and foraminiferal palaeoecology of the Radotruncana calcarata Total Range Zone.The Postalm section displays cyclic red deposits with marls and marly limestones, while we find uniform grey marls at Oberhehenfeld. The Oberhehenfeld section from the Ultrahelvetics can be correlated stratigraphically to the Postalm section using foraminifera, calcareous nannoplankton and stable isotope stratigraphy, and provides a point of comparison from the northern margin of the Penninic Ocean.The two sections show minimal difference in faunal composition and few distinct local stratigraphic signals. Palaeoenvironmental trends from the late Campanian can be recognised relating the two sections from the Austrian Alps. The depositional water depth can be reconstructed as some 500–800m. Plankton assemblages show a remarkable stability despite the sudden appearance and disappearance of R. calcarata, hinting at the late Campanian as a time interval of general foraminiferal stasis without significant evolutionary events. We speculate that the origin and extinction of R. calcarata are related to the prolonged evolution of ocean stratification during the Campanian from the mid-Cretaceous sluggish hothouse during a time of general slow greenhouse climate decline

    Intercomparison of cloud properties in DYAMOND simulations over the Atlantic Ocean

    Get PDF
    We intercompared the cloud properties of the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) simulation output over the Atlantic Ocean. The domain averaged outgoing longwave radiation (OLR) is relatively similar across the models, but the net shortwave radiation at the top of the atmosphere (NSR) shows large differences among the models. The models capture the triple modes of cloud systems corresponding to shallow, congestus, and high clouds, although their partition in these three categories is strongly model dependent. The simulated height of the shallow and congestus peaks is more robust than the peak of high clouds, whereas cloud water content exhibits larger intermodel differences than does cloud ice content. Furthermore, we investigated the resolution dependency of the vertical profiles of clouds for NICAM (Nonhydrostatic ICosahedral Atmospheric Model), ICON (Icosahedral Nonhydrostatic), and IFS (Integrated Forecasting System). We found that the averaged mixing ratio of ice clouds consistently increased with finer grid spacing. Such a consistent signal is not apparent for the mixing ratio of liquid clouds for shallow and congestus clouds. The impact of the grid spacing on OLR is smaller than on NSR and also much smaller than the intermodel differences

    The influence of land surface heterogeneities on cloud size development

    No full text
    This study analyzes the effects of land surface heterogeneities at various horizontal scales on the transition from shallow to deep convection and on the cloud size distribution. An idealized case of mid-latitude summertime convection is simulated by means of large-eddy simulations coupled to an interactive land surface. The transition is accelerated over heterogeneous surfaces. The simulation with an intermediate patch size of 12.8 km exhibits the fastest transition with a transition time two thirds that over a homogeneous surface. A similar timing is observed for the precipitation onset whereas the total accumulated rainfall tends to increase with patch size. The cloud size distribution can be approximated by a power law with a scale break. The exponent of the power law is independent of the heterogeneity scale, implying a similar cloud cover between the simulations. In contrast, the scale break varies with patch size. The size of the largest clouds does not scale with the boundary layer height, although their maximum size scales with the patch size. Finally, the idea that larger clouds grow faster, known from homogeneous surface conditions, is not fully valid over heterogeneous surfaces. These various aspects can be understood from the complex interplay between the characteristics of the triggered mesoscale circulations and a cloud development acting in response to the diurnal cycle in surface heating. The results also call for adequate representation of such effects in convective parameterizations

    Systematic approach to leptogenesis in nonequilibrium QFT: vertex contribution to the CP-violating parameter

    Full text link
    The generation of a baryon asymmetry via leptogenesis is usually studied by means of classical kinetic equations whose applicability to processes in the hot and expanding early universe is questionable. The approximations implied by the state-of-the-art description can be tested in a first-principle approach based on nonequilibrium field theory techniques. Here, we apply the Schwinger-Keldysh/Kadanoff-Baym formalism to a simple toy model of leptogenesis. We find that, within the toy model, medium effects increase the vertex contribution to the CP-violating parameter. At high temperatures it is a few times larger than in vacuum and asymptotically reaches the vacuum value as the temperature decreases. Contrary to the results obtained earlier in the framework of thermal field theory, the corrections are only linear in the particle number densities. An important feature of the Kadanoff-Baym formalism is that it is free of the double-counting problem, i.e. no need for real intermediate state subtraction arises. In particular, this means that the structure of the equations automatically ensures that the asymmetry vanishes in equilibrium. These results give a first glimpse into a number of new and interesting effects that can be studied in the framework of nonequilibrium field theory.Comment: 27 pages, 21 figure
    • …
    corecore