361 research outputs found
SENSITIVITY OF PERTURBATION GROWTH TO FLOW CHARACTERISTICS AND SAMPLING STRATEGY
The chaotic nature of the weather/climate attractor intrinsically limits the deterministic skill of weather forecasts by promoting rapid growth of errors. In this study, such error growth is simulated by artificially perturbing the atmosphere at initial time, and its sensitivity to the chosen perturbation methodology and to the flow
characteristics is investigated. The different simulations are integrated with the limited-area model LM run on a convection-resolving grid. Results demonstrate that the locations of growing disturbances are insensitive to the definition of the initial temperature perturbation. This can be explained through an analysis of the perturbation growth and propagation mechanisms. In particular, rapid radiation of the imposed initial disturbance through a sound
wave and presence of specific flow characteristics (e.g. convective instability) appear to force localized error growth far remote from the initial perturbation
The contribution of convection to the stratospheric water vapor: the first budget using a Global-Storm-Resolving Model
The deepest convection on Earth injects water in the tropical stratosphere, but its contribution to the global stratospheric water budget remains uncertain. The Global Storm-Resolving Model ICOsahedral Non-hydrostatic is used to simulate the moistening of the lower stratosphere for 40 days during boreal summer. The decomposition of the water vapor budget in the tropical lower stratosphere (TLS, 10°S–30°N, and 17–20 km altitude) indicates that the average moistening (+21 Tg) over the simulated 40-day period is the result of the combined effect of the vertical water vapor transport from the troposphere (+27 Tg), microphysical phase changes and subgrid-scale transport (+2 Tg), partly compensated by horizontal water vapor export (−8 Tg). The very deep convective systems, explicitly represented thanks to the employed 2.5 km grid spacing of the model, are identified using the very low Outgoing Longwave Radiation of their cold cloud tops. The water vapor budget reveals that the vertical transport, the sublimation and the subgrid-scale transport at their top contribute together to 11% of the water vapor mass input into the TLS
Entrainment and its dependency on environmental conditions and convective organization in convection-permitting simulations
In this study, we estimate bulk entrainment rates for deep convection in convection-permitting simulations, conducted over the tropical Atlantic Ocean, encompassing parts of Africa and South America. We find that, even though entrainment rates decrease with height in all regions, they are, when averaging between 600 and 800 hPa, generally higher over land than over ocean. This is so because, over Amazonia, shallow convection causes an increase of bulk entrainment rates at lower levels and because, over West Africa, where entrainment rates are highest, convection is organized in squall lines. These squall lines are associated with strong mesoscale convergence, causing more intense updrafts and stronger turbulence generation in the vicinity of updrafts, increasing the entrainment rates. With the exception of West Africa, entrainment rates differ less across regions than across different environments within the regions. In contrast to what is usually assumed in convective parameterizations, entrainment rates increase with environmental humidity. Moreover, over ocean, they increase with static stability, while over land, they decrease. In addition, confirming the results of a recent idealized study, entrainment rates increase with convective aggregation, except in regions dominated by squall lines, like over West Africa
Preconditioning deep convection with cumulus congestus
Recent studies have pushed forward the idea that congestus clouds, through their moistening of the atmosphere, could promote deep convection. On the other hand, older studies have tended to relate convective initiation to the large-scale forcing. These two views are here contrasted by performing a time-scale analysis. The analysis combines ship observations, large-eddy simulations, and 1 month of brightness temperature measurements with a focus on the tropical Atlantic and adjacent land areas. The time-scale analysis suggests that previous work may have overstated the importance of congestus moistening in the preconditioning of deep convection. It is found that cumuli congestus transition very rapidly to deep convection, in 2 h over land and 4 h over ocean. This is much faster than the time needed (10 h and longer) by congestus clouds to sufficiently moisten the atmosphere. Moreover, the majority of congestus clouds seem unable to grow into cumulonimbus and the probability of transition does not increase with increasing congestus lifetime (i.e., more moistening). Finally, the presence of cumuli congestus over a given region generally does not enhance the likelihood for deep convection development, either with respect to other regions or to clear-sky conditions. Hence, the results do not support the view of an atmosphere slowly deepening by local moistening, but rather, they may be interpreted as reminiscent of an atmosphere marked by violent and sudden outbursts of convection forced by dynamical effects. This also implies that moisture convergence is more important than local surface fluxes to trigger deep convection over a certain region
The role of the permanent wilting point in controlling the spatial distribution of precipitation
Convection-permitting simulations on an idealized land planet are performed to understand whether soil moisture acts to support or impede the organization of convection. Initially, shallow circulations driven by differential radiative cooling induce a self-aggregation of the convection into a single band, as has become familiar from simulations over idealized sea surfaces. With time, however, the drying of the nonprecipitating region induces a reversal of the shallow circulation, drawing the flow at low levels from the precipitating to the nonprecipitating region. This causes the precipitating convection to move over the dry soils and reverses the polarity of the circulation. The precipitation replenishes these soils with moisture at the expense of the formerly wet soils which dry, until the process repeats itself. On longer timescales, this acts to homogenize the precipitation field. By analyzing the strength of the shallow circulations, the surface budget with its effects on the boundary layer properties, and the shape of the soil moisture resistance function, we demonstrate that the soil has to dry out significantly, for the here-tested resistance formulations below 15% of its water availability, to be able to alter the precipitation distribution. We expect such a process to broaden the distribution of precipitation over tropical land. This expectation is supported by observations which show that in drier years the monsoon rains move farther inland over Africa
Effect of soil moisture on diurnal convection and precipitation in large-eddy simulations
A determination of the sign and magnitude of the soil moisture-precipitation feedback relies either on observations, where synoptic variability is difficult to isolate, or on model simulations, which suffer from biases mainly related to poorly resolved convection. In this study, a large-eddy simulation model with a resolution of 250m is coupled to a land surface model and several idealized experiments mimicking the full diurnal cycle of convection are performed, starting from different spatially homogeneous soil moisture conditions. The goal is to determine under which conditions drier soils may produce more precipitation than wetter ones. The methodology of previous conceptual studies that have quantified the likelihood of convection to be triggered over wet or dry soils is followed but includes the production of precipitation. Although convection can be triggered earlier over dry soils than over wet soils under certain atmospheric conditions, total precipitation is found to always decrease over dry soils. By splitting the total precipitation into its magnitude and duration component, it is found that the magnitude strongly correlates with surface latent heat flux, hence implying a wet soil advantage. Because of this strong scaling, changes in precipitation duration caused by differences in convection triggering are not able to overcompensate for the lack of evaporation over dry soils. These results are further validated using two additional atmospheric soundings and a series of perturbed experiments that consider cloud radiative effects, as well as the effect of large-scale forcing, winds, and plants on the soil moisture-precipitation coupling
The formation of wider and deeper clouds as a result of cold-pool dynamics
This study investigates how precipitation-driven cold pools aid the formation of wider clouds that are essential for a transition from shallow to deep convection. In connection with a temperature depression and a depletion of moisture inside developing cold pools, an accumulation of moisture in moist patches around the cold pools is observed. Convective clouds are formed on top of these moist patches. Larger moist patches form with time supporting more and larger clouds. Moreover, enhanced vertical lifting along the leading edges of the gravity current triggered by the cold pool is found. The interplay of moisture aggregation and lifting eventually promotes the formation of wider clouds that are less affected by entrainment and become deeper. These mechanisms are corroborated in a series of cloud-resolving model simulations representing different atmospheric environments. A positive feedback is observed in that in an atmosphere where cloud and rain formation is facilitated, stronger downdrafts will form. These stronger downdrafts lead to a stronger modification of the moisture field which in turn favour further cloud development. This effect is not only observed in the transition phase but is also active in prolonging the peak-time of precipitation in the later stages of the diurnal cycle. These findings are used to propose a simple way for incorporating the effect of cold pools on cloud sizes and thereby entrainment rate into parametrization schemes for convection. Comparison of this parameterization to the cloud-resolving modeling output gives promising results
A simplified model of precipitation enhancement over a heterogeneous surface
Soil moisture heterogeneities through the triggering of mesoscale circulations influence the onset of convection and subsequent evolution of thunderstorms producing heavy precipitation. However local evaporation also plays a role in determining precipitation amounts. Here we aim at disentangling the effect of advection and evaporation on precipitation over the course of a diurnal cycle by formulating a simple conceptual model. The derivation of the model is inspired from the results of simulations performed with a high-resolution (250 m) Large-Eddy Simulation model over a surface with varying degrees of heterogeneity. Key element of the model is the representation of precipitation as weighted sum of advection and evaporation, each weighted by its own efficiency. The model is then used to isolate the main parameters that control the variations of precipitation over spatially drier patches. It is found that these changes surprisingly do not depend on soil moisture itself but instead purely on parameters that describe the atmospheric initial state. The likelihood for enhanced precipitation over drier soils is discussed based on these parameters. Additional experiments are used to test the validity of the model
- …