95 research outputs found

    Carrier-density effects in many-polaron systems

    Full text link
    Many-polaron systems with finite charge-carrier density are often encountered experimentally. However, until recently, no satisfactory theoretical description of these systems was available even in the framework of simple models such as the one-dimensional spinless Holstein model considered here. In this work, previous results obtained using numerical as well as analytical approaches are reviewed from a unified perspective, focussing on spectral properties which reveal the nature of the quasiparticles in the system. In the adiabatic regime and for intermediate electron-phonon coupling, a carrier-density driven crossover from a polaronic to a rather metallic system takes place. Further insight into the effects due to changes in density is gained by calculating the phonon spectral function, and the fermion-fermion and fermion-lattice correlation functions. Finally, we provide strong evidence against the possibility of phase separation.Comment: 13 pages, 6 figures, accepted for publication in J. Phys.: Condens. Matter; final versio

    Dynamical critical exponent of the Jaynes-Cummings-Hubbard model

    Full text link
    An array of high-Q electromagnetic resonators coupled to qubits gives rise to the Jaynes-Cummings-Hubbard model describing a superfluid to Mott insulator transition of lattice polaritons. From mean-field and strong coupling expansions, the critical properties of the model are expected to be identical to the scalar Bose-Hubbard model. A recent Monte Carlo study of the superfluid density on the square lattice suggested that this does not hold for the fixed-density transition through the Mott lobe tip. Instead, mean-field behavior with a dynamical critical exponent z=2 was found. We perform large-scale quantum Monte Carlo simulations to investigate the critical behavior of the superfluid density and the compressibility. We find z=1 at the tip of the insulating lobe. Hence the transition falls in the 3D XY universality class, analogous to the Bose-Hubbard model.Comment: 4 pages, 4 figures. To appear as a Rapid Communication in Phys. Rev.

    Quantum Monte Carlo results for bipolaron stability in quantum dots

    Full text link
    Bipolaron formation in a two-dimensional lattice with harmonic confinement, representing a simplified model for a quantum dot, is investigated by means of quantum Monte Carlo simulations. This method treats all interactions exactly and takes into account quantum lattice fluctuations. Calculations of the bipolaron binding energy reveal that confinement opposes bipolaron formation for weak electron-phonon coupling, but abets a bound state at intermediate to strong coupling. Tuning the system from weak to strong confinement gives rise to a small reduction of the minimum Frohlich coupling parameter for the existence of a bound state.Comment: 5 pages, 2 figures, final version to appear in Phys. Rev.

    Quantum Phase Transitions in Bosonic Heteronuclear Pairing Hamiltonians

    Full text link
    We explore the phase diagram of two-component bosons with Feshbach resonant pairing interactions in an optical lattice. It has been shown in previous work to exhibit a rich variety of phases and phase transitions, including a paradigmatic Ising quantum phase transition within the second Mott lobe. We discuss the evolution of the phase diagram with system parameters and relate this to the predictions of Landau theory. We extend our exact diagonalization studies of the one-dimensional bosonic Hamiltonian and confirm additional Ising critical exponents for the longitudinal and transverse magnetic susceptibilities within the second Mott lobe. The numerical results for the ground state energy and transverse magnetization are in good agreement with exact solutions of the Ising model in the thermodynamic limit. We also provide details of the low-energy spectrum, as well as density fluctuations and superfluid fractions in the grand canonical ensemble.Comment: 11 pages, 14 figures. To appear in Phys. Rev.

    Luttinger Liquid Physics and Spin-Flip Scattering on Helical Edges

    Full text link
    We investigate electronic correlation effects on edge states of quantum spin-Hall insulators within the Kane-Mele-Hubbard model by means of quantum Monte Carlo simulations. Given the U(1) spin symmetry and time-reversal invariance, the low-energy theory is the helical Tomanaga-Luttinger model, with forward scattering only. For weak to intermediate interactions, this model correctly describes equal-time spin and charge correlations, including their doping dependence. As apparent from the Drude weight, bulk states become relevant in the presence of electron-electron interactions, rendering the forward-scattering model incomplete. Strong correlations give rise to slowly decaying transverse spin fluctuations, and inelastic spin-flip scattering strongly modifies the single-particle spectrum, leading to graphene-like edge state signatures. The helical Tomanaga-Luttinger model is completely valid only asymptotically in the weak-coupling limit.Comment: 5 pages, 5 figures (modified version with additional data

    Feshbach Resonance in Optical Lattices and the Quantum Ising Model

    Full text link
    Motivated by experiments on heteronuclear Feshbach resonances in Bose mixtures, we investigate s-wave pairing of two species of bosons in an optical lattice. The zero temperature phase diagram supports a rich array of superfluid and Mott phases and a network of quantum critical points. This topology reveals an underlying structure that is succinctly captured by a two-component Landau theory. Within the second Mott lobe we establish a quantum phase transition described by the paradigmatic longitudinal and transverse field Ising model. This is confirmed by exact diagonalization of the 1D bosonic Hamiltonian. We also find this transition in the homonuclear case.Comment: 5 pages, 4 figure

    Dynamic charge correlations near the Peierls transition

    Full text link
    The quantum phase transition between a repulsive Luttinger liquid and an insulating Peierls state is studied in the framework of the one-dimensional spinless Holstein model. We focus on the adiabatic regime but include the full quantum dynamics of the phonons. Using continuous-time quantum Monte Carlo simulations, we track in particular the dynamic charge structure factor and the single-particle spectrum across the transition. With increasing electron-phonon coupling, the dynamic charge structure factor reveals the emergence of a charge gap, and a clear signature of phonon softening at the zone boundary. The single-particle spectral function evolves continuously across the transition. Hybridization of the charge and phonon modes of the Luttinger liquid description leads to two modes, one of which corresponds to the coherent polaron band. This band acquires a gap upon entering the Peierls phase, whereas the other mode constitutes the incoherent, high-energy spectrum with backfolded shadow bands. Coherent polaronic motion is a direct consequence of quantum lattice fluctuations. In the strong-coupling regime, the spectrum is described by the static, mean-field limit. Importantly, whereas finite electron density in general leads to screening of polaron effects, the latter reappear at half filling due to charge ordering and lattice dimerization.Comment: 8 pages, 7 figures, final versio
    • …
    corecore