5 research outputs found

    Added value of 3D-vision during robotic pancreatoduodenectomy anastomoses in biotissue (LAEBOT 3D2D): a randomized controlled cross-over trial

    Get PDF
    Background: We tested the added value of 3D-vision on procedure time and surgical performance during robotic pancreatoduodenectomy anastomoses in biotissue. Robotic surgery has the advantage of articulating instruments and 3D-vision. Consensus is lacking on the added value of 3D-vision during laparoscopic surgery. Given the improved dexterity with robotic surgery, the added value of 3D-vision may be even less with robotic surgery. Methods: In this experimental randomized controlled cross-over trial, 20 surgeons and surgical residents from 5 countries performed robotic pancreaticojejunostomy and hepaticojejunostomy anastomoses in a biotissue organ model using the da Vinci® system and were randomized to start with either 3D- or 2D-vision. Primary endpoint was the time required to complete both anastomoses. Secondary endpoint was the objective structured assessment of technical skill (OSATS; range 12–60) rating; scored by two observers blinded to 3D/2D. Results: Robotic 3D-vision reduced the combined operative time from 78.1 to 57.3 min (24.6% reduction, p < 0.001; 20.8 min reduction, 95% confidence intervals 12.8–28.8 min). This reduction was consistent for both anastomoses and between surgeons and residents, p < 0.001. Robotic 3D-vision improved OSATS performance by 6.1 points (20.8% improvement, p = 0.003) compared to 2D (39.4 to 45.1 points, ± 5.5). Conclusion: 3D-vision has a considerable added value during robotic pancreatoduodenectomy anastomoses in biotissue in both time reduction and improved surgical performance as compared to 2D-vision

    The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS)

    Get PDF
    Objective: To develop and update evidence-based and consensus-based guidelines on laparoscopic and robotic pancreatic surgery. Summary Background Data: Minimally invasive pancreatic surgery (MIPS), including laparoscopic and robotic surgery, is complex and technically demanding. Minimizing the risk for patients requires stringent, evidence-based guidelines. Since the International Miami Guidelines on MIPS in 2019, new developments and key publications have been reported, necessitating an update. Methods: Evidence-based guidelines on 22 topics in 8 domains were proposed: terminology, indications, patients, procedures, surgical techniques and instrumentation, assessment tools, implementation and training, and artificial intelligence. The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS, September 2022) used the Scottish Intercollegiate Guidelines Network (SIGN) methodology to assess the evidence and develop guideline recommendations, the Delphi method to establish consensus on the recommendations among the Expert Committee, and the AGREE II-GRS tool for guideline quality assessment and external validation by a Validation Committee. Results: Overall, 27 European experts, 6 international experts, 22 international Validation Committee members, 11 Jury Committee members, 18 Research Committee members, and 121 registered attendees of the 2-day meeting were involved in the development and validation of the guidelines. In total, 98 recommendations were developed, including 33 on laparoscopic, 34 on robotic, and 31 on general MIPS, covering 22 topics in 8 domains. Out of 98 recommendations, 97 reached at least 80% consensus among the experts and congress attendees, and all recommendations were externally validated by the Validation Committee. Conclusions: The EGUMIPS evidence-based guidelines on laparoscopic and robotic MIPS can be applied in current clinical practice to provide guidance to patients, surgeons, policy-makers, and medical societies.</p
    corecore