16 research outputs found

    Sample handling for mass spectrometric proteomic investigations of human sera.

    Get PDF
    Contains fulltext : 84532.pdf (publisher's version ) (Open Access)10 p

    Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    Get PDF
    Contains fulltext : 154822.PDF (publisher's version ) (Open Access)BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. RESULTS: The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). CONCLUSION: These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes

    Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    No full text
    Contains fulltext : 137688.pdf (publisher's version ) (Closed access)SCOPE: We reevaluated previously reported associations between variants in pathways of one-carbon (1-C) (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. METHODS AND RESULTS: Odds ratios (OR) for 446 genetic variants were estimated among 13,410 OC cases and 22,635 controls, and among 2281 cases and 3444 controls with folate information. Following multiple testing correction, the most significant main effect associations were for dihydropyrimidine dehydrogenase (DPYD) variants rs11587873 (OR = 0.92; p = 6 x 10(-5)) and rs828054 (OR = 1.06; p = 1 x 10(-4)). Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT, and TYMS, also interacted significantly with folate in a multivariant analysis (corrected p = 9.9 x 10(-6)) but collectively explained only 0.2% of OC risk. Although no other associations were significant after multiple testing correction, variants in SHMT1 in 1-C transfer, previously reported with OC, suggested lower risk at higher folate (p(interaction) = 0.03-0.006). CONCLUSION: Variation in pyrimidine metabolism genes, particularly DPYD, which was previously reported to be associated with OC, may influence risk; however, stratification by folate intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-by-folate interactions are plausible but require further validation. Polymorphisms in selected genes in purine metabolism were not associated with OC

    p53 mutations in cultured malignant cells and oral cancers detected in extracted DNA and in situ, investigated by the polymerase chain reaction

    No full text
    Epithelial ovarian cancer (EOC) is a heterogeneous cancer with both genetic and environmental risk factors. Variants influencing the risk of developing the less-common EOC subtypes have not been fully investigated. We performed a genome-wide association study (GWAS) of EOC according to subtype by pooling genomic DNA from 545 cases and 398 controls of European descent, and testing for allelic associations. We evaluated for replication 188 variants from the GWAS [56 variants for mucinous, 55 for endometrioid and clear cell, 53 for low-malignant potential (LMP) serous, and 24 for invasive serous EOC], selected using pre-defined criteria. Genotypes from 13,188 cases and 23,164 controls of European descent were used to perform unconditional logistic regression under the log-additive genetic model; odds ratios (OR) and 95 % confidence intervals are reported. Nine variants tagging six loci were associated with subtype-specific EOC risk at P < 0.05, and had an OR that agreed in direction of effect with the GWAS results. Several of these variants are in or near genes with a biological rationale for conferring EOC risk, including ZFP36L1 and RAD51B for mucinous EOC (rs17106154, OR = 1.17, P = 0.029, n = 1,483 cases), GRB10 for endometrioid and clear cell EOC (rs2190503, P = 0.014, n = 2,903 cases), and C22orf26/BPIL2 for LMP serous EOC (rs9609538, OR = 0.86, P = 0.0043, n = 892 cases). In analyses that included the 75 GWAS samples, the association between rs9609538 (OR = 0.84, P = 0.0007) and LMP serous EOC risk remained statistically significant at P < 0.0012 adjusted for multiple testing. Replication in additional samples will be important to verify these results for the less-common EOC subtypes
    corecore