10,841 research outputs found

    Improvements in prevalence trend fitting and incidence estimation in EPP 2013

    Get PDF
    OBJECTIVE: Describe modifications to the latest version of the Joint United Nations Programme on AIDS (UNAIDS) Estimation and Projection Package component of Spectrum (EPP 2013) to improve prevalence fitting and incidence trend estimation in national epidemics and global estimates of HIV burden. METHODS: Key changes made under the guidance of the UNAIDS Reference Group on Estimates, Modelling and Projections include: availability of a range of incidence calculation models and guidance for selecting a model; a shift to reporting the Bayesian median instead of the maximum likelihood estimate; procedures for comparison and validation against reported HIV and AIDS data; incorporation of national surveys as an integral part of the fitting and calibration procedure, allowing survey trends to inform the fit; improved antenatal clinic calibration procedures in countries without surveys; adjustment of national antiretroviral therapy reports used in the fitting to include only those aged 15–49 years; better estimates of mortality among people who inject drugs; and enhancements to speed fitting. RESULTS: The revised models in EPP 2013 allow closer fits to observed prevalence trend data and reflect improving understanding of HIV epidemics and associated data. CONCLUSION: Spectrum and EPP continue to adapt to make better use of the existing data sources, incorporate new sources of information in their fitting and validation procedures, and correct for quantifiable biases in inputs as they are identified and understood. These adaptations provide countries with better calibrated estimates of incidence and prevalence, which increase epidemic understanding and provide a solid base for program and policy planning

    Peeling properties of lightlike signals in General Relativity

    Get PDF
    The peeling properties of a lightlike signal propagating through a general Bondi-Sachs vacuum spacetime and leaving behind another Bondi-Sachs vacuum space-time are studied. We demonstrate that in general the peeling behavior is the conventional one which is associated with a radiating isolated system and that it becomes unconventional if the asymptotically flat space-times on either side of the history of the light-like signal tend to flatness at future null infinity faster than the general Bondi-Sachs space-time. This latter situation occurs if, for example, the space-times in question are static Bondi-Sachs space- times.Comment: 14 pages, LaTeX2

    New Talent Signals: Shiny New Objects or a Brave New World?

    Get PDF
    Almost 20 years after McKinsey introduced the idea of a war for talent, technology is disrupting the talent identification industry. From smartphone profiling apps to workplace big data, the digital revolution has produced a wide range of new tools for making quick and cheap inferences about human potential and predicting future work performance. However, academic industrial–organizational (I-O) psychologists appear to be mostly spectators. Indeed, there is little scientific research on innovative assessment methods, leaving human resources (HR) practitioners with no credible evidence to evaluate the utility of such tools. To this end, this article provides an overview of new talent identification tools, using traditional workplace assessment methods as the organizing framework for classifying and evaluating new tools, which are largely technologically enhanced versions of traditional methods. We highlight some opportunities and challenges for I-O psychology practitioners interested in exploring and improving these innovations

    Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells.

    Get PDF
    Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli

    Inhomogeneous High Frequency Expansion-Free Gravitational Waves

    Full text link
    We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.Comment: 18 pages, Latex file, accepted for publication in Physical Review

    Geodesics in spacetimes with expanding impulsive gravitational waves

    Get PDF
    We study geodesic motion in expanding spherical impulsive gravitational waves propagating in a Minkowski background. Employing the continuous form of the metric we find and examine a large family of geometrically preferred geodesics. For the special class of axially symmetric spacetimes with the spherical impulse generated by a snapping cosmic string we give a detailed physical interpretation of the motion of test particles.Comment: 12 pages, Revtex, final versio

    Gravitational wave bursts from cusps and kinks on cosmic strings

    Full text link
    The strong beams of high-frequency gravitational waves (GW) emitted by cusps and kinks of cosmic strings are studied in detail. As a consequence of these beams, the stochastic ensemble of GW's generated by a cosmological network of oscillating loops is strongly non Gaussian, and includes occasional sharp bursts that stand above the ``confusion'' GW noise made of many smaller overlapping bursts. Even if only 10% of all string loops have cusps these bursts might be detectable by the planned GW detectors LIGO/VIRGO and LISA for string tensions as small as Gμ1013G \mu \sim 10^{-13}. In the implausible case where the average cusp number per loop oscillation is extremely small, the smaller bursts emitted by the ubiquitous kinks will be detectable by LISA for string tensions as small as Gμ1012G \mu \sim 10^{-12}. We show that the strongly non Gaussian nature of the stochastic GW's generated by strings modifies the usual derivation of constraints on GμG \mu from pulsar timing experiments. In particular the usually considered ``rms GW background'' is, when G \mu \gaq 10^{-7}, an overestimate of the more relevant confusion GW noise because it includes rare, intense bursts. The consideration of the confusion GW noise suggests that a Grand Unified Theory (GUT) value Gμ106 G \mu \sim 10^{-6} is compatible with existing pulsar data, and that a modest improvement in pulsar timing accuracy could detect the confusion noise coming from a network of cuspy string loops down to Gμ1011 G \mu \sim 10^{-11}. The GW bursts discussed here might be accompanied by Gamma Ray Bursts.Comment: 24 pages, 3 figures, Revtex, submitted to Phys. Rev.
    corecore