8,686 research outputs found
Detecting Early Galaxies Through Their 21-cm Signature
New observations over the next few years of the emission of distant objects
will help unfold the chapter in cosmic history around the era of the first
galaxies. These observations will use the neutral hydrogen emission or
absorption at a wavelength of 21-cm as a detector of the hydrogen abundance. We
predict the signature on the 21-cm signal of the early generations of galaxies.
We calculate the 21-cm power spectrum including two physical effects that were
neglected in previous calculations. The first is the redistribution of the UV
photons from the first galaxies due to their scattering off of the neutral
hydrogen, which results in an enhancement of the 21-cm signal. The second is
the presence of an ionized hydrogen bubble near each source, which produces a
cutoff at observable scales. We show that the resulting clear signature in the
21-cm power spectrum can be used to detect and study the population of galaxies
that formed just 200 million years after the Big Bang.Comment: 5 pages, 3 figures, submitted to MNRAS Let
The Sensitivity of First Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra
Statistical observations of the epoch of reionization (EOR) power spectrum
provide a rich data set for understanding the transition from the cosmic "dark
ages" to the ionized universe we see today. EOR observations have become an
active area of experimental cosmology, and three first generation
observatories--MWA, PAST, and LOFAR--are currently under development. In this
paper we provide the first quantitative calculation of the three dimensional
power spectrum sensitivity, incorporating the design parameters of a planned
array. This calculation is then used to explore the constraints these first
generation observations can place on the EOR power spectrum. The results
demonstrate the potential of upcoming power spectrum observations to constrain
theories of structure formation and reionization.Comment: 7 pages with 5 figures. Submitted to Ap
Space missions to detect the cosmic gravitational-wave background
It is thought that a stochastic background of gravitational waves was
produced during the formation of the universe. A great deal could be learned by
measuring this Cosmic Gravitational-wave Background (CGB), but detecting the
CGB presents a significant technological challenge. The signal strength is
expected to be extremely weak, and there will be competition from unresolved
astrophysical foregrounds such as white dwarf binaries. Our goal is to identify
the most promising approach to detect the CGB. We study the sensitivities that
can be reached using both individual, and cross-correlated pairs of space based
interferometers. Our main result is a general, coordinate free formalism for
calculating the detector response that applies to arbitrary detector
configurations. We use this general formalism to identify some promising
designs for a GrAvitational Background Interferometer (GABI) mission. Our
conclusion is that detecting the CGB is not out of reach.Comment: 22 pages, 7 figures, IOP style, References Adde
Sermons by Hogan
https://digitalcommons.acu.edu/crs_books/1339/thumbnail.jp
A Characterisation of Strong Wave Tails in Curved Space-Times
A characterisation of when wave tails are strong is proposed. The existence
of a curvature induced tail (i.e. a Green's function term whose support
includes the interior of the light-cone) is commonly understood to cause
backscattering of the field governed by the relevant wave equation. Strong
tails are characterised as those for which the purely radiative part of the
field is backscattered. With this definition, it is shown that electromagnetic
waves in asymptotically flat space-times and fields governed by tail-free
propagation have weak tails, but minimally coupled scalar fields in a
cosmological scenario have strong tails.Comment: 17 pages, Revtex, to appear in Classical and Quantum Gravit
Redshift space 21 cm power spectra from reionization
We construct a simple but self-consistent analytic ionization model for rapid
exploration of 21cm power spectrum observables in redshift space. It is fully
described by the average ionization fraction and HII patch size
and has the flexibility to accommodate various reionization scenarios. The
model associates ionization regions with dark matter halos of the number
density required to recover and treats redshift space distortions
self-consistently with the virial velocity of such halos. Based on this model,
we study the line-of-sight structures in the brightness fluctuations since they
are the most immune to foreground contamination. We explore the degeneracy
between the HII patch size and nonlinear redshift space distortion in the one
dimensional power spectrum. We also discuss the limitations experimental
frequency and angular resolutions place on their distinguishability. Angular
resolution dilutes even the radial signal and will be a serious limitation for
resolving small bubbles before the end of reionization. Nonlinear redshift
space distortions suggest that a resolution of order 1 -- 10\arcsec and a
frequency resolution of 10kHz will ultimately be desirable to extract the full
information in the radial field at . First generation instruments
such as LOFAR and MWA can potentially measure radial HII patches of a few
comoving Mpc and larger at the end of reionization and are unlikely to be
affected by nonlinear redshift space distortions.Comment: 13 pages, 10 figures. Revised version. Includes minor changes. Adds
appendix on accomodating a distribution of radii for the HII regions.
Accepted for publication in Ap
What initiated planetesimal formation?
The physical structure of primitive (chondritic) meteorites, even after some geological processing and modification, is thought by most to contain clues as to the first stage of accretion of solid matter into objects that might be called planetesimals. However, theoretical understanding of the processes responsible for this important stage is shaky. We note what we believe are fundamental obstacles for the Goldreich-Ward version of rapid and direct planetesimal formation via gravitational instability in a settled particle layer, and describe an alternative scenario which might lead from grainy nebula gas to primitive planetesimals in a way that has intriguing connections to the meteorite evidence
Gravitational Waves from Mesoscopic Dynamics of the Extra Dimensions
Recent models which describe our world as a brane embedded in a higher
dimensional space introduce new geometrical degrees of freedom: the shape
and/or size of the extra dimensions, and the position of the brane. These modes
can be coherently excited by symmetry breaking in the early universe even on
``mesoscopic'' scales as large as 1 mm, leading to detectable gravitational
radiation. Two sources are described: relativistic turbulence caused by a
first-order transition of a radion potential, and Kibble excitation of
Nambu-Goldstone modes of brane displacement. Characteristic scales and spectral
properties are estimated and the prospects for observation by LISA are
discussed. Extra dimensions with scale between 10 \AA and 1 mm, which enter the
3+1-D era at cosmic temperatures between 1 and 1000 TeV, produce backgrounds
with energy peaked at observed frequencies in the LISA band, between
and Hz. The background is detectable above instrument and
astrophysical foregrounds if initial metric perturbations are excited to a
fractional amplitude of or more, a likely outcome for the
Nambu-Goldstone excitations.Comment: Latex, 5 pages, plus one figure, final version to appear in Phys.
Rev. Let
Mapping the gravitational wave background
The gravitational wave sky is expected to have isolated bright sources
superimposed on a diffuse gravitational wave background. The background
radiation has two components: a confusion limited background from unresolved
astrophysical sources; and a cosmological component formed during the birth of
the universe. A map of the gravitational wave background can be made by
sweeping a gravitational wave detector across the sky. The detector output is a
complicated convolution of the sky luminosity distribution, the detector
response function and the scan pattern. Here we study the general
de-convolution problem, and show how LIGO (Laser Interferometric Gravitational
Observatory) and LISA (Laser Interferometer Space Antenna) can be used to
detect anisotropies in the gravitational wave background.Comment: 16 pages, 6 figures. Submitted to CQ
- âŠ