1,612 research outputs found

    Kondo effect in coupled quantum dots with RKKY interaction: Finite temperature and magnetic field effects

    Full text link
    We study transport through two quantum dots coupled by an RKKY interaction as a function of temperature and magnetic field. By applying the Numerical Renormalization Group (NRG) method we obtain the transmission and the linear conductance. At zero temperature and magnetic field, we observe a quantum phase transition between the Kondo screened state and a local spin singlet as the RKKY interaction is tuned. Above the critical RKKY coupling the Kondo peak is split. However, we find that both finite temperature and magnetic field restore the Kondo resonance. Our results agree well with recent transport experiments on gold grain quantum dots in the presence of magnetic impurities.Comment: 4 pages, 5 figure

    Entanglement witnessing in superconducting beamsplitters

    Full text link
    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.Comment: 5 pages, 2 figures, accepted for publication in EP

    One-parameter Superscaling at the Metal-Insulator Transition in Three Dimensions

    Full text link
    Based on the spectral statistics obtained in numerical simulations on three dimensional disordered systems within the tight--binding approximation, a new superuniversal scaling relation is presented that allows us to collapse data for the orthogonal, unitary and symplectic symmetry (β=1,2,4\beta=1,2,4) onto a single scaling curve. This relation provides a strong evidence for one-parameter scaling existing in these systems which exhibit a second order phase transition. As a result a possible one-parameter family of spacing distribution functions, Pg(s)P_g(s), is given for each symmetry class β\beta, where gg is the dimensionless conductance.Comment: 4 pages in PS including 3 figure

    Kondo-transport spectroscopy of single molecule magnets

    Full text link
    We demonstrate that in a single molecule magnet (SMM) strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment (QTM). Importantly, the Kondo temperature TKT_K can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as function of the transverse anisotropy parameter or a longitudinal magnetic field. For both integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.Comment: 5 pages, 3 figure

    Enhanced Conductance Through Side-Coupled Double Quantum Dots

    Full text link
    Conductance, on-site and inter-site charge fluctuations and spin correlations in the system of two side-coupled quantum dots are calculated using the Wilson's numerical renormalization group (NRG) technique. We also show spectral density calculated using the density-matrix NRG, which for some parameter ranges remedies inconsistencies of the conventional approach. By changing the gate voltage and the inter-dot tunneling rate, the system can be tuned to a non-conducting spin-singlet state, the usual Kondo regime with odd number of electrons occupying the dots, the two-stage Kondo regime with two electrons, or a valence-fluctuating state associated with a Fano resonance. Analytical expressions for the width of the Kondo regime and the Kondo temperature are given. We also study the effect of unequal gate voltages and the stability of the two-stage Kondo effect with respect to such perturbations.Comment: 11 pages, 12 figure

    Shape Analysis of the Level Spacing Distribution around the Metal Insulator Transition in the Three Dimensional Anderson Model

    Full text link
    We present a new method for the numerical treatment of second order phase transitions using the level spacing distribution function P(s)P(s). We show that the quantities introduced originally for the shape analysis of eigenvectors can be properly applied for the description of the eigenvalues as well. The position of the metal--insulator transition (MIT) of the three dimensional Anderson model and the critical exponent are evaluated. The shape analysis of P(s)P(s) obtained numerically shows that near the MIT P(s)P(s) is clearly different from both the Brody distribution and from Izrailev's formula, and the best description is of the form P(s)=c1sexp(c2s1+β)P(s)=c_1\,s\exp(-c_2\,s^{1+\beta}), with β0.2\beta\approx 0.2. This is in good agreement with recent analytical results.Comment: 14 pages in plain TeX, 6 figures upon reques

    Finite bias Cooper pair splitting

    Full text link
    In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit non-classical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the electrical transport through the device can be tuned by electrical means to be dominated either by Cooper pair splitting (CPS), or by elastic co-tunneling (EC). The basic experimental findings can be understood by considering the energy dependent density of states in a QD. The reported experiments add bias-dependent spectroscopy to the investigative tools necessary to develop CPS-based sources of entangled electrons in solid-state devices.Comment: 4 pages, 4 figure

    Creating exotic condensates via quantum-phase-revival dynamics in engineered lattice potentials

    Full text link
    In the field of ultracold atoms in optical lattices a plethora of phenomena governed by the hopping energy JJ and the interaction energy UU have been studied in recent years. However, the trapping potential typically present in these systems sets another energy scale and the effects of the corresponding time scale on the quantum dynamics have rarely been considered. Here we study the quantum collapse and revival of a lattice Bose-Einstein condensate (BEC) in an arbitrary spatial potential, focusing on the special case of harmonic confinement. Analyzing the time evolution of the single-particle density matrix, we show that the physics arising at the (temporally) recurrent quantum phase revivals is essentially captured by an effective single particle theory. This opens the possibility to prepare exotic non-equilibrium condensate states with a large degree of freedom by engineering the underlying spatial lattice potential.Comment: 9 pages, 6 figure
    corecore