9 research outputs found

    Spatial lipidomics reveals biased phospholipid remodeling in acute Pseudomonas lung infection

    No full text
    Pseudomonas aeruginosa (Pa) is a pathogen causing chronic pulmonary infections in patients with cystic fibrosis (CF). Manipulation of lipids is an important feature of Pa infection and on a tissue-level scale is poorly understood. Using a mouse model of acute Pa pulmonary infection, we explored the whole-lung phospholipid response using mass spectrometry imaging (MSI) and spatial lipidomics. Using a histology-driven analysis, we isolated airways and parenchyma from both mock- and Pa-infected lungs and used systems biology tools to identify enriched metabolic pathways from the differential phospholipid identities. Infection was associated with a set of 26 ions, with 11 unique to parenchyma and 6 unique to airways. Acyl remodeling was differentially enriched in infected parenchyma as the predominant biological function. These functions correlated with markers of polymorphonuclear (PMN) cell influx, a defining feature of the lung response to Pa infection, implicating enzymes active in phospholipid remodeling

    Spatial lipidomics reveals biased phospholipid remodeling in acute Pseudomonas lung infection

    No full text
    Pseudomonas aeruginosa (Pa) is a pathogen causing chronic pulmonary infections in patients with cystic fibrosis (CF). Manipulation of lipids is an important feature of Pa infection and on a tissue-level scale is poorly understood. Using a mouse model of acute Pa pulmonary infection, we explored the whole-lung phospholipid response using mass spectrometry imaging (MSI) and spatial lipidomics. Using a histology-driven analysis, we isolated airways and parenchyma from both mock- and Pa-infected lungs and used systems biology tools to identify enriched metabolic pathways from the differential phospholipid identities. Infection was associated with a set of 26 ions, with 11 unique to parenchyma and 6 unique to airways. Acyl remodeling was differentially enriched in infected parenchyma as the predominant biological function. These functions correlated with markers of polymorphonuclear (PMN) cell influx, a defining feature of the lung response to Pa infection, implicating enzymes active in phospholipid remodeling

    Remodeling of Lipid A in <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> In Vitro

    No full text
    Pseudomonas species infect a variety of organisms, including mammals and plants. Mammalian pathogens of the Pseudomonas family modify their lipid A during host entry to evade immune responses and to create an effective barrier against different environments, for example by removal of primary acyl chains, addition of phosphoethanolamine (P-EtN) to primary phosphates, and hydroxylation of secondary acyl chains. For Pseudomonas syringae pv. phaseolicola (Pph) 1448A, an economically important pathogen of beans, we observed similar lipid A modifications by mass spectrometric analysis. Therefore, we investigated predicted proteomes of various plant-associated Pseudomonas spp. for putative lipid A-modifying proteins using the well-studied mammalian pathogen Pseudomonas aeruginosa as a reference. We generated isogenic mutant strains of candidate genes and analyzed their lipid A. We show that the function of PagL, LpxO, and EptA is generally conserved in Pph 1448A. PagL-mediated de-acylation occurs at the distal glucosamine, whereas LpxO hydroxylates the secondary acyl chain on the distal glucosamine. The addition of P-EtN catalyzed by EptA occurs at both phosphates of lipid A. Our study characterizes lipid A modifications in vitro and provides a useful set of mutant strains relevant for further functional studies on lipid A modifications in Pph 1448A

    Lack of detection of a human placenta microbiome in samples from preterm and term deliveries

    No full text
    Abstract Background Historically, the human womb has been thought to be sterile in healthy pregnancies, but this idea has been challenged by recent studies using DNA sequence-based methods, which have suggested that the womb is colonized with bacteria. For example, analysis of DNA from placenta samples yielded small proportions of microbial sequences which were proposed to represent normal bacterial colonization. However, an analysis by our group showed no distinction between background negative controls and placenta samples. Also supporting the idea that the womb is sterile is the observation that germ-free mammals can be generated by sterile delivery of neonates into a sterile isolator, after which neonates remain germ-free, which would seem to provide strong data in support of sterility of the womb. Results To probe this further and to investigate possible placental colonization associated with spontaneous preterm birth, we carried out another study comparing microbiota in placenta samples from 20 term and 20 spontaneous preterm deliveries. Both 16S rRNA marker gene sequencing and shotgun metagenomic sequencing were used to characterize placenta and control samples. We first quantified absolute amounts of bacterial 16S rRNA gene sequences using 16S rRNA gene quantitative PCR (qPCR). As in our previous study, levels were found to be low in the placenta samples and indistinguishable from negative controls. Analysis by DNA sequencing did not yield a placenta microbiome distinct from negative controls, either using marker gene sequencing as in our previous work, or with shotgun metagenomic sequencing. Several types of artifacts, including erroneous read classifications and barcode misattribution, needed to be identified and removed from the data to clarify this point. Conclusions Our findings do not support the existence of a consistent placental microbiome, in either placenta from term deliveries or spontaneous preterm births
    corecore