329 research outputs found
Clustering Spectrum of scale-free networks
Real-world networks often have power-law degrees and scale-free properties
such as ultra-small distances and ultra-fast information spreading. In this
paper, we study a third universal property: three-point correlations that
suppress the creation of triangles and signal the presence of hierarchy. We
quantify this property in terms of , the probability that two
neighbors of a degree- node are neighbors themselves. We investigate how the
clustering spectrum scales with in the hidden variable
model and show that follows a {\it universal curve} that consists of
three -ranges where remains flat, starts declining, and
eventually settles on a power law with
depending on the power law of the degree distribution. We test these results
against ten contemporary real-world networks and explain analytically why the
universal curve properties only reveal themselves in large networks
Search in Complex Networks : a New Method of Naming
We suggest a method for routing when the source does not posses full
information about the shortest path to the destination. The method is
particularly useful for scale-free networks, and exploits its unique
characteristics. By assigning new (short) names to nodes (aka labelling) we are
able to reduce significantly the memory requirement at the routers, yet we
succeed in routing with high probability through paths very close in distance
to the shortest ones.Comment: 5 pages, 4 figure
Ising models on power-law random graphs
We study a ferromagnetic Ising model on random graphs with a power-law degree
distribution and compute the thermodynamic limit of the pressure when the mean
degree is finite (degree exponent ), for which the random graph has a
tree-like structure. For this, we adapt and simplify an analysis by Dembo and
Montanari, which assumes finite variance degrees (). We further
identify the thermodynamic limits of various physical quantities, such as the
magnetization and the internal energy
Moment-based parameter estimation in binomial random intersection graph models
Binomial random intersection graphs can be used as parsimonious statistical
models of large and sparse networks, with one parameter for the average degree
and another for transitivity, the tendency of neighbours of a node to be
connected. This paper discusses the estimation of these parameters from a
single observed instance of the graph, using moment estimators based on
observed degrees and frequencies of 2-stars and triangles. The observed data
set is assumed to be a subgraph induced by a set of nodes sampled from
the full set of nodes. We prove the consistency of the proposed estimators
by showing that the relative estimation error is small with high probability
for . As a byproduct, our analysis confirms that the
empirical transitivity coefficient of the graph is with high probability close
to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure
Mean-field driven first-order phase transitions in systems with long-range interactions
We consider a class of spin systems on with vector valued spins
(\bS_x) that interact via the pair-potentials J_{x,y} \bS_x\cdot\bS_y. The
interactions are generally spread-out in the sense that the 's exhibit
either exponential or power-law fall-off. Under the technical condition of
reflection positivity and for sufficiently spread out interactions, we prove
that the model exhibits a first-order phase transition whenever the associated
mean-field theory signals such a transition. As a consequence, e.g., in
dimensions , we can finally provide examples of the 3-state Potts model
with spread-out, exponentially decaying interactions, which undergoes a
first-order phase transition as the temperature varies. Similar transitions are
established in dimensions for power-law decaying interactions and in
high dimensions for next-nearest neighbor couplings. In addition, we also
investigate the limit of infinitely spread-out interactions. Specifically, we
show that once the mean-field theory is in a unique ``state,'' then in any
sequence of translation-invariant Gibbs states various observables converge to
their mean-field values and the states themselves converge to a product
measure.Comment: 57 pages; uses a (modified) jstatphys class fil
Limited path percolation in complex networks
We study the stability of network communication after removal of
links under the assumption that communication is effective only if the shortest
path between nodes and after removal is shorter than where is the shortest path before removal. For a large
class of networks, we find a new percolation transition at
, where and
is the node degree. Below , only a fraction of
the network nodes can communicate, where , while above , order nodes can
communicate within the limited path length . Our analytical results
are supported by simulations on Erd\H{o}s-R\'{e}nyi and scale-free network
models. We expect our results to influence the design of networks, routing
algorithms, and immunization strategies, where short paths are most relevant.Comment: 11 pages, 3 figures, 1 tabl
Diameters in preferential attachment models
In this paper, we investigate the diameter in preferential attachment (PA-)
models, thus quantifying the statement that these models are small worlds. The
models studied here are such that edges are attached to older vertices
proportional to the degree plus a constant, i.e., we consider affine PA-models.
There is a substantial amount of literature proving that, quite generally,
PA-graphs possess power-law degree sequences with a power-law exponent \tau>2.
We prove that the diameter of the PA-model is bounded above by a constant
times \log{t}, where t is the size of the graph. When the power-law exponent
\tau exceeds 3, then we prove that \log{t} is the right order, by proving a
lower bound of this order, both for the diameter as well as for the typical
distance. This shows that, for \tau>3, distances are of the order \log{t}. For
\tau\in (2,3), we improve the upper bound to a constant times \log\log{t}, and
prove a lower bound of the same order for the diameter. Unfortunately, this
proof does not extend to typical distances. These results do show that the
diameter is of order \log\log{t}.
These bounds partially prove predictions by physicists that the typical
distance in PA-graphs are similar to the ones in other scale-free random
graphs, such as the configuration model and various inhomogeneous random graph
models, where typical distances have been shown to be of order \log\log{t} when
\tau\in (2,3), and of order \log{t} when \tau>3
A Two-populations Ising model on diluted Random Graphs
We consider the Ising model for two interacting groups of spins embedded in
an Erd\"{o}s-R\'{e}nyi random graph. The critical properties of the system are
investigated by means of extensive Monte Carlo simulations. Our results
evidence the existence of a phase transition at a value of the inter-groups
interaction coupling which depends algebraically on the dilution of
the graph and on the relative width of the two populations, as explained by
means of scaling arguments. We also measure the critical exponents, which are
consistent with those of the Curie-Weiss model, hence suggesting a wide
robustness of the universality class.Comment: 11 pages, 4 figure
The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion
For independent nearest-neighbour bond percolation on Z^d with d >> 6, we
prove that the incipient infinite cluster's two-point function and three-point
function converge to those of integrated super-Brownian excursion (ISE) in the
scaling limit. The proof is based on an extension of the new expansion for
percolation derived in a previous paper, and involves treating the magnetic
field as a complex variable. A special case of our result for the two-point
function implies that the probability that the cluster of the origin consists
of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an
error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong
statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic,
and xr package
- …