329 research outputs found

    Clustering Spectrum of scale-free networks

    Get PDF
    Real-world networks often have power-law degrees and scale-free properties such as ultra-small distances and ultra-fast information spreading. In this paper, we study a third universal property: three-point correlations that suppress the creation of triangles and signal the presence of hierarchy. We quantify this property in terms of cˉ(k)\bar c(k), the probability that two neighbors of a degree-kk node are neighbors themselves. We investigate how the clustering spectrum kcˉ(k)k\mapsto\bar c(k) scales with kk in the hidden variable model and show that c(k)c(k) follows a {\it universal curve} that consists of three kk-ranges where cˉ(k)\bar c(k) remains flat, starts declining, and eventually settles on a power law cˉ(k)kα\bar c(k)\sim k^{-\alpha} with α\alpha depending on the power law of the degree distribution. We test these results against ten contemporary real-world networks and explain analytically why the universal curve properties only reveal themselves in large networks

    Search in Complex Networks : a New Method of Naming

    Full text link
    We suggest a method for routing when the source does not posses full information about the shortest path to the destination. The method is particularly useful for scale-free networks, and exploits its unique characteristics. By assigning new (short) names to nodes (aka labelling) we are able to reduce significantly the memory requirement at the routers, yet we succeed in routing with high probability through paths very close in distance to the shortest ones.Comment: 5 pages, 4 figure

    Ising models on power-law random graphs

    Full text link
    We study a ferromagnetic Ising model on random graphs with a power-law degree distribution and compute the thermodynamic limit of the pressure when the mean degree is finite (degree exponent τ>2\tau>2), for which the random graph has a tree-like structure. For this, we adapt and simplify an analysis by Dembo and Montanari, which assumes finite variance degrees (τ>3\tau>3). We further identify the thermodynamic limits of various physical quantities, such as the magnetization and the internal energy

    Moment-based parameter estimation in binomial random intersection graph models

    Full text link
    Binomial random intersection graphs can be used as parsimonious statistical models of large and sparse networks, with one parameter for the average degree and another for transitivity, the tendency of neighbours of a node to be connected. This paper discusses the estimation of these parameters from a single observed instance of the graph, using moment estimators based on observed degrees and frequencies of 2-stars and triangles. The observed data set is assumed to be a subgraph induced by a set of n0n_0 nodes sampled from the full set of nn nodes. We prove the consistency of the proposed estimators by showing that the relative estimation error is small with high probability for n0n2/31n_0 \gg n^{2/3} \gg 1. As a byproduct, our analysis confirms that the empirical transitivity coefficient of the graph is with high probability close to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure

    Mean-field driven first-order phase transitions in systems with long-range interactions

    Full text link
    We consider a class of spin systems on Zd\Z^d with vector valued spins (\bS_x) that interact via the pair-potentials J_{x,y} \bS_x\cdot\bS_y. The interactions are generally spread-out in the sense that the Jx,yJ_{x,y}'s exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d3d\ge3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d=1,2d=1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique ``state,'' then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.Comment: 57 pages; uses a (modified) jstatphys class fil

    Limited path percolation in complex networks

    Full text link
    We study the stability of network communication after removal of q=1pq=1-p links under the assumption that communication is effective only if the shortest path between nodes ii and jj after removal is shorter than aij(a1)a\ell_{ij} (a\geq1) where ij\ell_{ij} is the shortest path before removal. For a large class of networks, we find a new percolation transition at p~c=(κo1)(1a)/a\tilde{p}_c=(\kappa_o-1)^{(1-a)/a}, where κo/\kappa_o\equiv / and kk is the node degree. Below p~c\tilde{p}_c, only a fraction NδN^{\delta} of the network nodes can communicate, where δa(1logp/log(κo1))<1\delta\equiv a(1-|\log p|/\log{(\kappa_o-1)}) < 1, while above p~c\tilde{p}_c, order NN nodes can communicate within the limited path length aija\ell_{ij}. Our analytical results are supported by simulations on Erd\H{o}s-R\'{e}nyi and scale-free network models. We expect our results to influence the design of networks, routing algorithms, and immunization strategies, where short paths are most relevant.Comment: 11 pages, 3 figures, 1 tabl

    Diameters in preferential attachment models

    Get PDF
    In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying the statement that these models are small worlds. The models studied here are such that edges are attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-models. There is a substantial amount of literature proving that, quite generally, PA-graphs possess power-law degree sequences with a power-law exponent \tau>2. We prove that the diameter of the PA-model is bounded above by a constant times \log{t}, where t is the size of the graph. When the power-law exponent \tau exceeds 3, then we prove that \log{t} is the right order, by proving a lower bound of this order, both for the diameter as well as for the typical distance. This shows that, for \tau>3, distances are of the order \log{t}. For \tau\in (2,3), we improve the upper bound to a constant times \log\log{t}, and prove a lower bound of the same order for the diameter. Unfortunately, this proof does not extend to typical distances. These results do show that the diameter is of order \log\log{t}. These bounds partially prove predictions by physicists that the typical distance in PA-graphs are similar to the ones in other scale-free random graphs, such as the configuration model and various inhomogeneous random graph models, where typical distances have been shown to be of order \log\log{t} when \tau\in (2,3), and of order \log{t} when \tau>3

    A Two-populations Ising model on diluted Random Graphs

    Full text link
    We consider the Ising model for two interacting groups of spins embedded in an Erd\"{o}s-R\'{e}nyi random graph. The critical properties of the system are investigated by means of extensive Monte Carlo simulations. Our results evidence the existence of a phase transition at a value of the inter-groups interaction coupling J12CJ_{12}^C which depends algebraically on the dilution of the graph and on the relative width of the two populations, as explained by means of scaling arguments. We also measure the critical exponents, which are consistent with those of the Curie-Weiss model, hence suggesting a wide robustness of the universality class.Comment: 11 pages, 4 figure

    The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion

    Full text link
    For independent nearest-neighbour bond percolation on Z^d with d >> 6, we prove that the incipient infinite cluster's two-point function and three-point function converge to those of integrated super-Brownian excursion (ISE) in the scaling limit. The proof is based on an extension of the new expansion for percolation derived in a previous paper, and involves treating the magnetic field as a complex variable. A special case of our result for the two-point function implies that the probability that the cluster of the origin consists of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic, and xr package
    corecore