338 research outputs found

    Comparing direct (live-trapping) and indirect (camera-trapping) approaches for estimating the abundance of weasels (Mustela nivalis)

    Get PDF
    Information on the presence and abundance of a species is crucial for understanding key ecological processes but also for effective protection and population management. Collecting data on cryptic species, like small mustelids, is particularly challenging and often requires the use of non-invasive methods. Despite recent progress in the development of camera trap-based devices and statistical models to estimate the abundance of unmarked individuals, their application for studying this group of mammals is still very limited. We compared direct (live-trapping) and indirect (an enclosed camera-trapping approach-the Mostela system) survey methods to estimate the population size of weasels (Mustela nivalis) inhabiting open grasslands in Northeast Poland over a period of four years. We also live-trapped voles to determine prey availability. We used a Royle-Nichols model to estimate yearly (relative) abundance from the camera-trapping data in a Bayesian framework. The total number of live-captured weasels showed a similar change over time as the relative abundance of weasels estimated using camera-trap data. Moreover, estimates of weasel abundance increased with the availability of their main prey. Our study is part of a growing body of work showing that camera traps can provide a useful non-invasive method to estimate the relative abundance of small mustelids. Moreover, a combination of data from camera traps with statistical models allowed us to track the changes in weasel number over time. This information could be very useful for the conservation of small mustelids as well as their management in regions where they are invasive

    Clustered and rotating designs as a strategy to obtain precise detection rates in camera trapping studies

    Get PDF
    Camera traps have transformed the way we monitor wildlife and are now routinely used to address questions from a wide range of ecological and conservation aspects. Sampling design optimization and a better understanding of drivers determining the precision of detection rates (i.e. the number of detections per unit of effort) are important methodological issues. Little attention has been focused on the effect of placing more than one camera on each sampling point (hereafter, clustered design), and/or rotating (i.e. redeploying) the cameras to new placements during the sampling period.We explored the differences in the precision of detection rates between clustered vs. single camera designs when cameras remained in the same location during the study. Furthermore, the effect of keeping the placement of cameras fixed or rotating them (i.e. moving them to new locations during the sampling period), when a limited number of camera devices are available, was also evaluated. We used simulations and field data to test differences in detection rate precision for the different sampling designs. We simulated three different population distributions (random, trail-based and aggregated) and three abundance scenarios. The simulations were validated with a field experiment focused on eight species with different behavioural traits, including artiodactyls, carnivores, lagomorphs, and birds.When a fixed number of sampling points were monitored simultaneously, clustered designs generally resulted in an increase in the precision of detection rates compared to single designs. The absolute reduction in the coefficient of variation by clustered designs was on average 0.07 units (min: 0.01, max: 0.15), which represents an average relative reduction in CV of 31% (min:6%, max:44%). An improvement in precision was also observed as a higher number of sampling points was used for all population distributions and sampling designs tested. When a fixed number of cameras were available, rotating the cameras to independent locations improved precision (an absolute reduction of 0.19 CV units) when monitoring aggregated populations, but not for random and trail-based population distributions.Synthesis and applications: Our research provides a guideline for wildlife managers and researchers to improve the precision of camera trap detection rates and optimize resource allocation. In general, the study design should accommodate the behaviour of the target species (e.g. spatial aggregation and abundance), monitoring program logistic resources (both human and economic) and study area characteristics (e.g. accessibility and vandalism)

    Bottom-up rather than top-down mechanisms determine mesocarnivore interactions in Norway

    Get PDF
    Interactions among coexisting mesocarnivores can be influenced by different factors such as the presence of large carnivores, land-use, environmental productivity, or human disturbance. Disentangling the relative importance of bottom-up and top-down processes can be challenging, but it is important for biodiversity conservation and wildlife management. The aim of this study was to assess how the interactions among mesocarnivores (red fox Vulpes vulpes, badger Meles meles, and pine marten Martes martes) were affected by large carnivores (Eurasian lynx Lynx lynx and wolf Canis lupus), land cover variables (proportion of agricultural land and primary productivity), and human disturbance, as well as how these top-down and bottom-up mechanisms were influenced by season. We analyzed 3 years (2018-2020) of camera trapping observations from Norway and used structural equation models to assess hypothesized networks of causal relationships. Our results showed that land cover variables were more strongly associated with mesocarnivore detection rates than large carnivores in Norway. This might be caused by a combination of low density of large carnivores in an unproductive ecosystem with strong seasonality. Additionally, detection rates of all mesocarnivores showed positive associations among each other, which were stronger in winter. The prevalence of positive interactions among predators might indicate a tendency to use the same areas and resources combined with weak interference competition. Alternatively, it might indicate some kind of facilitative relationship among species. Human disturbance had contrasting effects for different species, benefiting the larger mesocarnivores (red fox and badger) probably through food subsidization, but negatively affecting apex predators (wolf and lynx) and smaller mesocarnivores (pine marten). In a human-dominated world, this highlights the importance of including anthropogenic influences in the study of species interactions.We used 3 years of camera trap data from Norway to assess how the interactions among mesocarnivores (red fox, badger, and pine marten) were affected by large carnivores (Eurasian lynx and wolf), land cover variables, and human disturbance, as well as how these top-down and bottom-up mechanisms were influenced by season. Our results showed that land cover variables were stronger predictors of mesocarnivore activity than large carnivores in Norway. Human disturbance had contrasting effects for large carnivores and mesocarnivores. Humans can influence species through different top-down and bottom-up processes, which highlights the complexity of anthropogenic effects on species interactions.imag

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human-wildlife interactions along gradients of human influence.Analysing camera-trap data of 163 mammal species before and after the onset of COVID-19 lockdowns, the authors show that responses to human activity are dependent on the degree to which the landscape is modified by humans, with carnivores being especially sensitive

    Non-invasive methods for monitoring weasels: emerging technologies and priorities for future research

    Get PDF
    1. Weasels (genus Mustela and Neogale) are of management concern as declining native species in some regions and invasive species in others. Regardless of the need to conserve or remove weasels, there is increasingly a need to use non-invasive monitoring methods to assess population trends.2. We conducted a literature review and held the first ever International Weasel Monitoring Symposium to synthesise information on historical and current non-invasive monitoring techniques for weasels. We also explored current limitations, opportunities, and areas of development to guide future research and long-term monitoring.3. Our literature search revealed that in the past 20 years, camera traps were the most commonly used non-invasive monitoring method (62% of studies), followed by track plates or scent stations designed to collect footprints (23%) and walking transects for tracks in snow or soil (8.7%).4. Experts agreed that the most promising non-invasive monitoring techniques available include use of citizen scientist reporting, detection dogs, detecting tracks, non-invasive genetic surveys, and enclosed or unenclosed camera trap systems. Because each technique has benefits and limitations, using a multi-method approach is likely required.5. There is a need for strong commitment to dedicated monitoring that is replicated over space and time such that trend data can be ascertained to better inform future management action. The diversity of non-invasive monitoring methods now available makes such monitoring possible with relatively minor commitments of funding and effort

    Camtrap DP: an open standard for the FAIR exchange and archiving of camera trap data

    Get PDF
    Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap-derived Big Data are becoming increasingly solvable with the help of scalable cyber-infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, "Camera Trap Metadata Standard" (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (e.g., human and AI, media-based and event-based) and analytical use cases, from compiling species occurrence data through distribution, occupancy and activity modeling to density estimation. The format further achieves interoperability by building upon existing standards, Frictionless Data Package in particular, which is supported by a suite of open software tools to read and validate data. Camtrap DP is the consensus of a long, in-depth, consultation and outreach process with standard and software developers, the main existing camera trap data management platforms, major players in the field of camera trapping and the Global Biodiversity Information Facility (GBIF). Under the umbrella of the Biodiversity Information Standards (TDWG), Camtrap DP has been developed openly, collaboratively and with version control from the start. We encourage camera trapping users and developers to join the discussion and contribute to the further development and adoption of this standard.We present a new data exchange format for camera trap data, the Camera Trap Data Package (Camtrap DP; ), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP is being developed under the umbrella of the Biodiversity Information Standards (TDWG), and through outreach and collaboration, it is now supported by GBIF. Importantly, Camtrap DP is the consensus of a long, in depth consultation process among the main existing camera trap data management platforms, as well as some of the major global players in the field of camera trapping. As an open, evolving standard for the FAIR exchange and archive of camera trap data, Camtrap DP represents an important step towards a global data sharing workflow with rapid results and thus more timely science based wildlife management recommendations.imag

    A simple method for estimating the effective detection distance of camera traps

    Get PDF
    Estimates of animal abundance are essential for understanding animal ecology. Camera traps can be used to estimate the abundance of terrestrial mammals, including elusive species, provided that the sensitivity of the sensor, estimated as the effective detection distance (EDD), is quantified. Here, we show how the EDD can be inferred directly from camera trap images by placing markers at known distances along the midline of the camera field of view, and then fitting distance-sampling functions to the frequency of animal passage between markers. EDD estimates derived from simulated passages using binned detection distances approximated those obtained from continuous detection distance measurements if at least five intervals were used over the maximum detection distance. A field test of the method in two forest types with contrasting vegetation density, with five markers at 2.5 m intervals, produced credible EDD estimates for 13 forest-dwelling mammals. EDD estimates were positively correlated with species body mass, and were shorter for the denser vegetation, as expected. Our findings suggest that this simple method can produce reliable estimates of EDD. These estimates can be used to correct photographic capture rates for difference in sampling effort resulting from differences in sensor sensitivity between species and habitats. Simplifying the estimation of EDD will result in less biased indices of relative abundance, and will also facilitate the use of camera trap data for estimating animal density

    Red and fallow deer determine the density of Ixodes ricinus nymphs containing Anaplasma phagocytophilum

    Get PDF
    BackgroundThe density of Ixodes ricinus nymphs infected with Anaplasma phagocytophilum is one of the parameters that determines the risk for humans and domesticated animals to contract anaplasmosis. For this, I. ricinus larvae need to take a bloodmeal from free-ranging ungulates, which are competent hosts for A. phagocytophilum.MethodsHere, we compared the contribution of four free-ranging ungulate species, red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), and wild boar (Sus scrofa), to A. phagocytophilum infections in nymphs. We used a combination of camera and live trapping to quantify the relative availability of vertebrate hosts to questing ticks in 19 Dutch forest sites. Additionally, we collected questing I. ricinus nymphs and tested these for the presence of A. phagocytophilum. Furthermore, we explored two potential mechanisms that could explain differences between species: (i) differences in larval burden, which we based on data from published studies, and (ii) differences in associations with other, non-competent hosts.ResultsPrincipal component analysis indicated that the density of A. phagocytophilum-infected nymphs (DIN) was higher in forest sites with high availability of red and fallow deer, and to a lesser degree roe deer. Initial results suggest that these differences are not a result of differences in larval burden, but rather differences in associations with other species or other ecological factors.ConclusionsThese results indicate that the risk for contracting anaplasmosis in The Netherlands is likely highest in the few areas where red and fallow deer are present. Future studies are needed to explore the mechanisms behind this association

    Courage and co-creation: Cultural transformation in an academic library

    Get PDF
    University libraries are transforming to be vibrant and distinctive online and physical spaces that, at their heart, continue to foster the connection of people to ideas. Rapid and continuously changing expectations of clients in the range of services that are delivered by libraries, combined with increasingly demanding resourcing environments are challenges for all library leaders. A library staff culture that is energised, focused and resilient is essential to ensure that service expectations are met or exceeded and that the library retains its valued position in the university. The University Librarian at Curtin University in Australia has initiated and led a library staff culture transformation program over an 18-month period. The program has adopted an empowerment mindset to increase commitment, involvement and optimism amongst library staff. The need for such a transformative program was identified following a particularly difficult period of staff disruption. The ‘Appreciative Inquiry’ dialogic method was used to facilitate a whole of library engagement and activity program that commenced with a two day ‘Library Challenge’ event. The event brought together library staff, students and academics to identify the desired culture along with a roadmap to meet that goal. The Your Voice Satisfaction Survey (Your Voice), a research validated employee satisfaction and engagement survey, was used to evaluate the Curtin University Library culture program with the survey being run before, and during the program’s implementation. Results show significant shifts in staff engagement as the culture program has been rolled out, particularly in the areas of commitment, involvement and positive outlook. This paper will outline the staff culture transformation program at Curtin University Library with an emphasis on the skills and attitudes required by library leaders to ensure success in this critical area of leadership

    Applied ecology of fear: A meta-analysis on the potential of facilitating human-wildlife coexistence through nonlethal tools

    Get PDF
    The term “applied ecology of fear” was recently introduced to describe the growing research field that applies the theory of the ecology of fear to manage wildlife behaviour. The management goal is to drive targeted species spatially and temporally away from areas of human interest by inducing cues from real or simulated predators to reduce human-wildlife conflict.We aimed to quantify, through a meta-analysis, if prey anti-predator response would vary among field trials versus pen-based studies, predator cue types, predator hunting style and prey feeding type, and be stronger in response to larger predators relative to the prey's size. We also explored what studies found in terms of wildlife habituation to cues.We used species belonging to the Cervidae family as a case study since deer are among the group of species with the highest degree of human-wildlife conflict. We retrieved 114 studies from online databases and collected information from 39 of those studies that fitted our research scope.We found that acoustic cues more frequently led to an anti-predator response in deer than olfactory or visual cues. Neither predator hunting strategy nor deer feeding strategy or type of study (free-ranging or pen-based animals) influenced the extent to which deer responded to cues. Deer more frequently responded to cues that belonged to a larger predator relative to their size. Habituation was reported in less than one-third of the studies, with a study period ranging from 1 to 90 days, and occurred as soon as 7 days after the start of the study on average.Our meta-analysis suggested that acoustic cues hold most potential as a tool to manage deer behaviour. These findings support the development of applied ecology of fear tools that introduce predator cues to reduce human-wildlife conflicts. Major knowledge gaps remain that limit the effective use of such tools in wildlife management and future research should focus on improving our understanding of habituation to cues, on comparing the effectiveness of different types of cues, on simultaneously using a combination of cue types, and on testing cues at spatial–temporal scales of actual land-uses
    corecore