14,046 research outputs found

    Microscopic Model versus Systematic Low-Energy Effective Field Theory for a Doped Quantum Ferromagnet

    Full text link
    We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast to antiferromagnets, for which the effective field theory approach can be tested only numerically, in the ferromagnetic case both the microscopic and the effective theory can be solved analytically. In this way the low-energy parameters of the effective theory are determined exactly by matching to the underlying microscopic model. The low-energy behavior at half-filling as well as in the single- and two-hole sectors is described exactly by the systematic low-energy effective field theory. In particular, for weakly bound two-hole states the effective field theory even works beyond perturbation theory. This lends strong support to the quantitative success of the systematic low-energy effective field theory method not only in the ferromagnetic but also in the physically most interesting antiferromagnetic case.Comment: 34 pages, 1 figur

    Homogeneous versus Spiral Phases of Hole-doped Antiferromagnets: A Systematic Effective Field Theory Investigation

    Full text link
    Using the low-energy effective field theory for magnons and holes -- the condensed matter analog of baryon chiral perturbation theory for pions and nucleons in QCD -- we study different phases of doped antiferromagnets. We systematically investigate configurations of the staggered magnetization that provide a constant background field for doped holes. The most general configuration of this type is either constant itself or it represents a spiral in the staggered magnetization. Depending on the values of the low-energy parameters, a homogeneous phase, a spiral phase, or an inhomogeneous phase is energetically favored. The reduction of the staggered magnetization upon doping is also investigated.Comment: 35 pages, 5 figure

    Systematic Effective Field Theory Investigation of Spiral Phases in Hole-Doped Antiferromagnets on the Honeycomb Lattice

    Get PDF
    Motivated by possible applications to the antiferromagnetic precursor of the high-temperature superconductor Nax_xCoO2_2\cdotyH2_2O, we use a systematic low-energy effective field theory for magnons and holes to study different phases of doped antiferromagnets on the honeycomb lattice. The effective action contains a leading single-derivative term, similar to the Shraiman-Siggia term in the square lattice case, which gives rise to spirals in the staggered magnetization. Depending on the values of the low-energy parameters, either a homogeneous phase with four or a spiral phase with two filled hole pockets is energetically favored. Unlike in the square lattice case, at leading order the effective action has an accidental continuous spatial rotation symmetry. Consequently, the spiral may point in any direction and is not necessarily aligned with a lattice direction.Comment: 10 pages, 6 figure

    Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics

    Full text link
    We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.Comment: 9 pages, 9 figures; prepared for the XIV Mexican School of Particles and Fields, 4-12 November 2010, Morelia, Michoacan, Mexic

    Spiral phases and two-particle bound states from a systematic low-energy effective theory for magnons, electrons, and holes in an antiferromagnet

    Full text link
    We have constructed a systematic low-energy effective theory for hole- and electron-doped antiferromagnets, where holes reside in momentum space pockets centered at (±π2a,±π2a)(\pm\frac{\pi}{2a},\pm\frac{\pi}{2a}) and where electrons live in pockets centered at (πa,0)(\frac{\pi}{a},0) or (0,πa)(0,\frac{\pi}{a}). The effective theory is used to investigate the magnon-mediated binding between two holes or two electrons in an otherwise undoped system. We derive the one-magnon exchange potential from the effective theory and then solve the corresponding two-quasiparticle Schr\"odinger equation. As a result, we find bound state wave functions that resemble dx2y2d_{x^2-y^2}-like or dxyd_{xy}-like symmetry. We also study possible ground states of lightly doped antiferromagnets.Comment: 2 Pages; Proc. of SCES'07, Housto

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure

    4He experiments can serve as a database for determining the three-nucleon force

    Full text link
    We report on microscopic calculations for the 4He compound system in the framework of the resonating group model employing realistic nucleon-nucleon and three nucleon forces. The resulting scattering phase shifts are compared to those of a comprehensive R-matrix analysis of all data in this system, which are available in numerical form. The agreement between calculation and analysis is in most cases very good. Adding three-nucleon forces yields in many cases large effects. For a few cases the new agreement is striking. We relate some differencies between calculation and analysis to specific data and discuss neccessary experiments to clarify the situation. From the results we conclude that the data of the 4He system might be well suited to determine the structure of the three-nucleon force.Comment: title changed,note added, format of figures changed, appearance of figures in black-and-white changed, Phys. Rev. C accepte

    Constraint Effective Potential of the Staggered Magnetization in an Antiferromagnet

    Full text link
    We employ an improved estimator to calculate the constraint effective potential of the staggered magnetization in the spin 12\tfrac{1}{2} quantum Heisenberg model using a loop-cluster algorithm. The first and second moment of the probability distribution of the staggered magnetization are in excellent agreement with the predictions of the systematic low-energy magnon effective field theory. We also compare the Monte Carlo data with the universal shape of the constraint effective potential of the staggered magnetization and study its approach to the convex effective potential in the infinite volume limit. In this way the higher-order low-energy parameter k0k_0 is determined from a fit to the numerical data

    Mean first passage time for nuclear fission and the emission of light particles

    Get PDF
    The concept of a mean first passage time is used to study the time lapse over which a fissioning system may emit light particles. The influence of the "transient" and "saddle to scission times" on this emission are critically examined. It is argued that within the limits of Kramers' picture of fission no enhancement over that given by his rate formula need to be considered.Comment: 4 pages, RevTex, 4 postscript figures; with correction of misprints; appeared in Phys. Rev. Lett.90.13270
    corecore