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Abstract. Motivated by possible applications to the antiferromagnetic precursor of the high-temperature
superconductor NaxCoO2·yH2O, we use a systematic low-energy effective field theory for magnons and
holes to study different phases of doped antiferromagnets on the honeycomb lattice. The effective action
contains a leading single-derivative term, similar to the Shraiman-Siggia term in the square lattice case,
which gives rise to spirals in the staggered magnetization. Depending on the values of the low-energy pa-
rameters, either a homogeneous phase with four or a spiral phase with two filled hole pockets is energetically
favored. Unlike in the square lattice case, at leading order the effective action has an accidental continu-
ous spatial rotation symmetry. Consequently, the spiral may point in any direction and is not necessarily
aligned with a lattice direction.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 75.30.Ds Spin
waves – 75.50.Ee Antiferromagnetics – 12.39.Fe Chiral Lagrangians

1 Introduction

Since the discovery of high-temperature superconductiv-
ity in the cuprates [1], identifying the dynamical mecha-
nism behind it remains one of the biggest challenges in
condensed matter physics. It has been suggested that the
physics of high-temperature superconductivity can be de-
scribed by t-J-type models. Using a variety of techniques,
numerous interesting properties of doped antiferromag-
nets have been investigated in great detail both numer-
ically and analytically [2–39]. For instance, as was first
pointed out by Shraiman and Siggia [6], a spiral phase with
a helical structure in the staggered magnetization is a can-
didate ground state of doped antiferromagnets even at ar-
bitrarily small doping [10,18,21,23–28,30,31,34–38,40,41].
Unfortunately, due to the strong electron correlations
in these systems, most analytic results suffer from un-
controlled approximations. Similarly, numerical simula-
tions suffer from a severe sign problem away from half-
filling. Consequently, although numerous investigations
have been devoted to understanding the spiral phases in
doped antiferromagnets, some controversial results have
been obtained.

a e-mail: fjjiang@itp.unibe.ch

In analogy to chiral perturbation theory for the pions
in QCD [42,43], a systematic low-energy effective field the-
ory for the magnons in an antiferromagnet was developed
in [8,9,12,22,29,33,44]. Motivated by the success of baryon
chiral perturbation theory for pions and nucleons [45–49],
respecting the symmetry constraints of the underlying t-J
model and taking into account the location of the hole
or electron pockets in momentum space, low-energy effec-
tive field theories for magnons and holes or electrons have
been constructed for lightly doped antiferromagnets on
the square lattice in [50–52]. The effective theories are uni-
versally applicable and yield results that are exact, order
by order in a systematic low-energy expansion. Material-
specific properties enter the effective Lagrangian in the
form of a priori undetermined low-energy parameters, like
the spin stiffness ρs or the spinwave velocity c. The ef-
fective theories for hole- and electron-doped systems were
used to investigate the one-magnon exchange potentials
and the resulting two-hole or two-electron bound states
as well as possible spiral phases [51–54]. In the hole-doped
case, the leading order magnon-hole coupling is described
by the Shraiman-Siggia term that contains just a single
spatial derivative. For sufficiently small ρs, even at arbi-
trarily small hole density, this term stabilizes a zero de-
gree spiral phase in which the spiral is oriented along a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33064888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2009-00200-x


474 The European Physical Journal B

lattice axis. In the electron-doped case, on the other hand,
the Shraiman-Siggia term is forbidden by the symmetries,
and, consequently, spiral phases are not energetically fa-
vorable.

In addition to the cuprates, another superconducting
material, NaxCoO2·yH2O [55], has attracted a lot of at-
tention [56–61]. The underlying triangular lattice of this
geometrically frustrated material leads to a severe sign
problem and thus prevents us from studying it from first
principles using Monte Carlo calculations. On the other
hand, the honeycomb lattice structure of the dehydrated
variant of NaxCoO2·yH2O at x = 1/3 has motivated sev-
eral investigations of the antiferromagnetism as well as the
single-hole dispersion relation on the non-frustrated hon-
eycomb lattice [62,63]. In particular, the low-energy pa-
rameters of the effective theory for the t-J model, namely
the staggered magnetization ˜Ms [64], the spin-stiffness ρs,
the spinwave velocity c, and the kinetic mass of a hole M ′
have been determined with high precision using an effi-
cient cluster algorithm [63].

Motivated by possible applications to NaxCoO2·yH2O,
using the same methods as for the square lattice [50,52],
we have constructed a systematic effective field theory for
the t-J model on the honeycomb lattice. The details of
this construction will be presented in a forthcoming pub-
lication [65]. In this work, we apply the resulting effective
Lagrangian to investigate possible spiral phases of lightly
hole-doped antiferromagnets on the honeycomb lattice. In
contrast to the square lattice case, the leading terms of the
effective Lagrangian have an accidental continuous rota-
tion symmetry. This implies that possible spirals are not
necessarily aligned with a lattice direction. Assuming that
the 4-fermion couplings between holes can be treated per-
turbatively, the effective theory predicts that, depending
on the values of the low-energy parameters, either a ho-
mogeneous phase with four or a spiral phase with two
occupied hole pockets is energetically favored.

The rest of this paper is organized as follows. In Sec-
tion 2 we review the effective theory for magnons and holes
in an antiferromagnet on the honeycomb lattice. In partic-
ular, we list the transformation properties of magnon and
hole fields under the symmetries of the underlying micro-
scopic t-J model, and we discuss the accidental spatial
rotation invariance of the leading terms in the effective
Lagrangian. In Section 3 we consider the homogeneous
and possible spiral phases restricting ourselves to config-
urations that induce a homogeneous background field for
the doped holes. In Section 4, we include the 4-fermion
couplings using perturbation theory and investigate the
stability ranges of the various phases. Finally, Section 5
contains our conclusions.

2 Systematic low-energy effective field theory
for magnons and holes

In this section we briefly review the effective theory
for magnons and holes in an antiferromagnet on the
honeycomb lattice. In particular, we list the symmetry

transformation rules for magnon and hole fields under the
various symmetries of the underlying t-J model which is
essential for constructing the effective Lagrangian. The
staggered magnetization of an antiferromagnet is de-
scribed by a unit-vector field

e(x) = (sin θ(x) cosϕ(x), sin θ(x) sinϕ(x), cos θ(x)), (1)

in the coset space SU(2)s/U(1)s = S2, with x = (x1, x2, t)
denoting a point in (2 + 1)-dimensional space-time. A key
ingredient for constructing the effective field theory is the
nonlinear realization of the global SU(2)s spin symme-
try which is spontaneously broken down to its U(1)s sub-
group [50]. This construction leads to an Abelian “gauge”
field v3

μ(x) and to two vector fields v±μ (x) which are
“charged” under U(1)s spin transformations. The coupling
of magnons to holes is realized through a matrix-valued
anti-Hermitean field

vμ(x) = ivaμ(x)σa, v±μ (x) = v1
μ(x) ∓ iv2

μ(x), (2)

which decomposes into an Abelian “gauge” field v3
μ(x)

and two vector fields v±μ (x) “charged” under the unbro-
ken subgroup U(1)s. Here σ are the Pauli matrices. These
fields have a well-defined transformation behavior under
the symmetries which the effective theory inherits from
the underlying microscopic t-J model

SU(2)s : vμ(x)′ = h(x)(vμ(x) + ∂μ)h(x)†,

Di : Divμ(x) = vμ(x),

O : Ov1(x) = τ(Ox)
(

1
2v1(Ox) +

√
3

2 v2(Ox)

+ 1
2∂1 +

√
3

2 ∂2

)

τ(Ox)†,
Ov2(x) = τ(Ox)

( −
√

3
2 v1(Ox) + 1

2v2(Ox)

−
√

3
2 ∂1 + 1

2∂2

)

τ(Ox)†,
Ovt(x) = τ(Ox)(vt(Ox) + ∂t)τ(Ox)†,

R : Rv1(x) = v1(Rx), Rv2(x) = −v2(Rx),
Rvt(x) = vt(Rx),

T : T vi(x) = τ(Tx)(vi(Tx) + ∂i)τ(Tx)†,
T vt(x) = −τ(Tx)(vt(Tx) + ∂t)τ(Tx)†, (3)

where Di, with i ∈ {1, 2}, are the displacements along
primitive translation vectors which are chosen to be a1 =
(3
2a,

√
3

2 a) and a2 = (0,
√

3a), respectively. Here a is the
lattice spacing. Further, O, R, and T in equation (3) rep-
resent a 60 degrees spatial rotation around the center of a
hexagon, a spatial reflection, and time reversal, which are
given by

Ox = O(x1, x2, t) = (1
2x1 −

√
3

2 x2,
√

3
2 x1 + 1

2x2, t),
Rx = R(x1, x2, t) = (x1,−x2, t),
Tx = T (x1, x2, t) = (x1, x2,−t), (4)

respectively. In expressing these symmetry transforma-
tion properties, we have introduced the matrix τ(x) which
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Fig. 1. Bipartite non-Bravais honeycomb lattice consisting of
two triangular Bravais sublattices.
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Fig. 2. Brillouin zone of the honeycomb lattice with corre-
sponding hole pockets.

takes the form

τ(x) =
(

0 − exp(−iϕ(x))
exp(iϕ(x)) 0

)

. (5)

Finally, the Abelian “gauge” transformation

h(x) = exp(iα(x)σ3) (6)

belongs to the unbroken U(1)s subgroup of SU(2)s and
acts on the composite vector fields as

v3
μ(x)

′ = v3
μ(x) − ∂μα(x),

v±μ (x)′ = v±μ (x) exp(±2iα(x)). (7)

Analytic calculations as well as Monte Carlo simulations
in t-J-like models on the honeycomb lattice have revealed
that at small doping holes occur in pockets centered at
lattice momenta kα = −kβ = (0, 4π

3
√

3a
), and their copies in

the periodic Brillouin zone [62,63]. The honeycomb lattice,
illustrated in Figure 1, is a bipartite non-Bravais lattice
which consists of two triangular Bravais sublattices. The
corresponding Brillouin zone and the corresponding hole
pockets are shown in Figure 2. The single-hole dispersion
relation for the t-J model on the honeycomb lattice is
illustrated in Figure 3.
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Fig. 3. Energy-momentum dispersion relation Eh(k)/t for
a single hole in the t-J model on the honeycomb lattice
for J/t = 2.

The effective field theory is defined in the space-time
continuum and the holes are described by Grassmann-
valued fields ψfs (x) carrying a “flavor” index f = α, β
that characterizes the corresponding hole pocket. The in-
dex s = ± denotes spin parallel (+) or antiparallel (−)
to the local staggered magnetization. As will be shown
in [65], under the various symmetry operations the hole
fields transform as

SU(2)s : ψf±(x)′ = exp(±iα(x))ψf±(x),

U(1)Q : Qψf±(x) = exp(iω)ψf±(x),

Di : Diψf±(x) = exp(ikfi ai)ψ
f
±(x),

O : Oψα±(x) = ∓ exp
(∓iϕ(Ox) ± i 2π3

)

ψβ∓(Ox),
Oψβ±(x) = ∓ exp

(∓iϕ(Ox) ∓ i 2π3
)

ψα∓(Ox),

R : Rψα±(x) = ψβ±(Rx), Rψβ±(x) = ψα±(Rx),

T : Tψα±(x) = exp(∓iϕ(Tx))ψβ†± (Tx),
Tψβ±(x) = exp(∓iϕ(Tx))ψα†± (Tx),
Tψα†± (x) = − exp(±iϕ(Tx))ψβ±(Tx),
Tψβ†± (x) = − exp(±iϕ(Tx))ψα±(Tx). (8)

Here U(1)Q is the fermion number symmetry of the
holes. Interestingly, in the effective continuum theory
the location of holes in lattice momentum space man-
ifests itself as a “charge” kfi under the displacement
symmetry Di.

Once the relevant low-energy degrees of freedom have
been identified and the transformation rules of the cor-
responding fields have been understood, the construction
of the effective action is uniquely determined. The low-
energy effective action of magnons and holes is constructed
as a derivative expansion. At low energies, terms with a
small number of derivatives dominate the dynamics. Since
the holes are heavy nonrelativistic fermions, one time-
derivative counts like two spatial derivatives. Here we limit
ourselves to terms with at most one temporal or two spa-
tial derivatives. One then constructs all terms consistent
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with the symmetries listed above. The effective action can
be written as

S[ψf†± , ψf±, e] =
∫

d2x dt
∑

nψ

Lnψ , (9)

where nψ denotes the number of fermion fields that the
various terms contain. The leading terms in the pure
magnon sector take the form

L0 =
ρs
2

(

∂ie · ∂ie +
1
c2
∂te · ∂te

)

= 2ρs

(

v+
i v

−
i +

1
c2
v+
t v

−
t

)

. (10)

Here ρs is the spin stiffness and c is the spinwave veloc-
ity. The effective field theory is valid at energies small
compared to ρs, which is proportional to the strength of
the magnon-magnon interaction in the undoped system.
When the system is doped, the magnon-magnon interac-
tion is renormalized by fermion contributions arising from
additional contribution to the Lagrangian. The leading
terms with two fermion fields (containing at most one tem-
poral or two spatial derivatives) are given by

L2 =
∑

f=α,β
s=+,−

[

Mψf†s ψ
f
s + ψf†s Dtψ

f
s +

1
2M ′Diψ

f†
s Diψ

f
s

+Λψf†s (isvs1 + σfv
s
2)ψ

f
−s

+ iK
[

(D1 + isσfD2)ψf†s (vs1 + isσfv
s
2)ψ

f
−s

− (vs1 + isσfv
s
2)ψ

f†
s (D1 + isσfD2)ψ

f
−s

]

+σfLψ
f†
s εijf

3
ijψ

f
s +N1ψ

f†
s v

s
i v

−s
i ψfs

+ isσfN2

(

ψf†s v
s
1v

−s
2 ψfs − ψf†s v

s
2v

−s
1 ψfs

)

]

. (11)

Note that all low-energy parameters that appear above
take real values. It should be noted that v±i (x) contains
one spatial derivative, such that magnons and holes are
indeed derivatively coupled. In equation (11), M is the
rest mass and M ′ is the kinetic mass of a hole. In contrast
to the free fermion case of graphene, the holes in a doped
antiferromagnet on the honeycomb lattice pick up a mass
due to spontaneous symmetry breaking. This is analogous
to the generation of the nucleon mass due to chiral symme-
try breaking in QCD. Since the holes are massive, the non-
analyticities associated with the Dirac-cones of graphene
do not affect the effective field theory constructed here.
Furthermore, Λ is the leading and K is a subleading hole-
one-magnon coupling, L, N1 and N2 are hole-two-magnon
couplings, and

f3
ij(x) = ∂iv

3
j (x) − ∂jv

3
i (x) (12)

is the field strength of the composite Abelian “gauge”
field. The sign σf is + for f = α and − for f = β. The
covariant derivative in equation (11) takes the form

Dμψ
f
±(x) = ∂μψ

f
±(x) ± iv3

μ(x)ψ
f
±(x). (13)

The leading terms with four fermion fields and without
derivatives are given by

L4 =
∑

s=+,−

{G1

2
(ψα†s ψαs ψ

α†
−sψ

α
−s + ψβ†s ψ

β
s ψ

β†
−sψ

β
−s)

+G2ψ
α†
s ψαs ψ

β†
s ψ

β
s +G3ψ

α†
s ψαs ψ

β†
−sψ

β
−s

}

(14)

with the real-valued 4-fermion coupling constants G1, G2,
and G3. In principle, there are even more contact interac-
tions among the fermions, such as 6- and 8-fermion cou-
plings as well as 4-fermion couplings including derivatives.
Since these terms play no role in the present work, we will
not list them explicitly.

Remarkably, the leading terms of the above
Lagrangian have an accidental continuous O(γ) ro-
tation symmetry that acts as

O(γ)ψfs (x) = exp(isσfγ/2)ψfs (O(γ)x),
O(γ)v1(x) = cos γ v1(O(γ)x) + sin γ v2(O(γ)x),
O(γ)v2(x) = − sinγ v1(O(γ)x) + cos γ v2(O(γ)x),

O(γ)x = O(γ)(x1, x2, t) =
(cos γ x1 − sin γ x2, sinγ x1 + cos γ x2, t). (15)

This symmetry is not present in the underlying micro-
scopic systems and is indeed explicitly broken by the
higher-order terms in the effective action.

3 Homogeneous versus spiral phases

This section is devoted to the analysis of homogeneous
and spiral configurations of the staggered magnetization,
illustrated in Figures 4 and 5, respectively. The arrows in
these figures do not represent individual quantum spins,
but a coarse-grained staggered magnetization field. They
are shown on a quadratic grid which should not be con-
fused with the underlying microscopic honeycomb lattice.
First, the energy of doped holes is calculated keeping the
staggered magnetization field fixed. Then the parameters
of the staggered magnetization field are varied in order to
minimize the total energy.

3.1 Fermionic contribution to the energy

In this subsection we compute the fermionic contribution
to the energy of a homogeneous or spiral configuration of
the staggered magnetization. For the moment, we ignore
the 4-fermion couplings. The considerations of this paper
are valid only if the 4-fermion couplings are weak and can
be treated in perturbation theory. Furthermore, we may
neglect the vertices proportional to K, L, N1, and N2

which involve two spatial derivatives and are thus of higher
order than the hole-one-magnon vertex proportional to Λ.
The fermion Hamiltonian resulting from the leading terms
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Fig. 4. Homogeneous phase with constant staggered magne-
tization.

Fig. 5. Spiral phase with helical structure in the staggered
magnetization.

of the Euclidean action is given by

H =
∫

d2x
∑

f=α,β
s=+,−

[

MΨf†s Ψfs +
1

2M ′DiΨ
f†
s DiΨ

f
s

+ ΛΨf†s (isvs1 + σfv
s
2)Ψ

f
−s

]

. (16)

The covariant derivative takes the form

DiΨ
f
±(x) = ∂iΨ

f
±(x) ± iv3

i (x)Ψ
f
±(x). (17)

Here Ψf†s (x) and Ψfs (x) are creation and annihilation op-
erators (not Grassmann numbers) for fermions of flavor
f = α, β and spin s = +,− (parallel or antiparallel to
the local staggered magnetization), which obey canoni-
cal anticommutation relations. As before, σα = 1 and
σβ = −1. The above Hamiltonian is invariant against

time-independent U(1)s gauge transformations

Ψf±(x)′ = exp(±iα(x))Ψf±(x),

v3
i (x)

′ = v3
i (x) − ∂iα(x),

v±i (x)′ = v±i (x) exp(±2iα(x)). (18)

Here we consider holes propagating in the background of
a configuration with

v3
i (x)

′ = c3i , v±i (x)′ = ci ∈ R, (19)

where c3i and ci are real-valued constants. In other words,
we focus on configurations of the staggered magnetiza-
tion in which (after an appropriate gauge transformation)
the fermions experience a constant composite vector field
vi(x)′, which leads to a homogeneous fermion density. As
was shown in [54], the most general configuration of this
kind represents a spiral in the staggered magnetization.
The parameter ci determine the spiral pitch whose in-
verse is the length scale of the spiral. The Hamiltonian
can then be diagonalized by going to momentum space.
Since magnon exchange does not mix the flavors, the
Hamiltonian can be considered separately for f = α and
f = β, but it still mixes spin s = + with s = −. The
single-particle Hamiltonian for holes with spatial momen-
tum p = (p1, p2) takes the form

Hf (p) =

(

M + (pi−c3i )2
2M ′ Λ(ic1 + σf c2)

Λ(−ic1 + σf c2) M + (pi+c
3
i )

2

2M ′

)

. (20)

The hole-one-magnon vertex proportional to Λ mixes the
spin s = + and s = − states and provides a potential
mechanism to stabilize a spiral phase. The diagonalization
of the above Hamiltonian yields

Ef±(p) = M +
p2
i + (c3i )

2

2M ′ ±
√

(

pic3i
M ′

)2

+ Λ2|c|2, (21)

where |c| =
√

c21 + c22. Interestingly, the above equation
is independent of the flavor index f . We will keep the
flavor index to indicate that there are two flavors in our
calculations. Since the energy depends only on |c|, unlike
in the square lattice case, potential spiral configurations
do not prefer any particular spatial direction. This is due
to the O(γ) spatial rotation symmetry discussed in the
previous section. However, one should keep in mind that
O(γ) is an accidental symmetry of just the leading terms
in the effective action, which is broken explicitly by the
higher-order terms. Hence, when the higher-order terms
are included, one expects the spiral to align with a lattice
direction. Mixing via the Λ vertex lowers the energy Ef−
and raises the energy Ef+. It should be noted that, in this
case, the index ± no longer refers to the spin orientation.
Indeed, the eigenvectors corresponding to Ef± are linear
combinations of both spins. The minimum of the energy
is located at p = 0 for which

Ef±(0) = M +
(c3i )

2

2M ′ ± Λ|c|. (22)
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Since c3i does not affect the magnon contribution to the en-
ergy density, we fix it by minimizing Ef−(0) which implies
c31 = c32 = 0. The energies of equation (21) then reduce to

Ef±(p) = M +
p2
i

2M ′ ± Λ|c|. (23)

Consequently, the filled hole pockets P f± are circles deter-
mined by

p2
i

2M ′ = T f±, (24)

where T f± is the kinetic energy of a hole in the pocket P f±
at the Fermi surface. The area of an occupied hole pocket
determines the fermion density as

nf± =
1

(2π)2

∫

P f±

d2p =
1
2π
M ′T f±. (25)

The kinetic energy density of a filled pocket is given by

tf± =
1

(2π)2

∫

P f±

d2p
p2
i

2M ′ =
1
4π
M ′T f±

2
. (26)

The total density of fermions of all flavors is

n = nα+ + nα− + nβ+ + nβ−

=
1
2π
M ′(Tα+ + Tα− + T β+ + T β−), (27)

and the total energy density of the holes is

εh = εα+ + εα− + εβ+ + εβ−, (28)

with
εf± = (M ± Λ|c|)nf± + tf±. (29)

The filling of the various hole pockets is controlled by the
parameters T f± which must be varied in order to minimize
the energy while keeping the total density of holes fixed.
We thus introduce

S = εh − μn, (30)

where μ is a Lagrange multiplier that fixes the density,
and we demand

∂S

∂T f±
=

1
2π
M ′(M ± Λ|c| + T f± − μ) = 0. (31)

3.2 Four populated hole pockets

We will now populate the various hole pockets with
fermions. First, we keep the configuration of the staggered
magnetization fixed and we vary the T f± in order to min-
imize the energy of the fermions. Then we also vary the
parameters ci of the staggered magnetization field in or-
der to minimize the total energy. One must distinguish
various cases, depending on how many hole pockets are
populated with fermions. In this subsection, we consider

the case of populating all four hole pockets (i.e. with both
flavors f = α, β and with both energy indices ±). In this
case, equation (31) implies

μ = M +
πn

2M ′ , T f± =
πn

2M ′ ∓ Λ|c|. (32)

The total energy density then takes the form

ε = ε0 + εm + εh

= ε0 + 2ρs|c|2 + εα+ + εα− + εβ+ + εβ−

= ε0 + 2ρs|c|2 +Mn+
πn2

4M ′ −
1
π
M ′Λ2|c|2. (33)

Here ε0 is the energy density of the system at half-filling.
For 2πρs > M ′Λ2 the energy is minimized for ci = 0 and
the configuration is thus homogeneous. The total energy
density in the four-pocket case is then given by

ε4 = ε0 +Mn+
πn2

4M ′ . (34)

For 2πρs < M ′Λ2, on the other hand, the energy is not
bounded from below. In this case, |c| seems to grow with-
out bound. However, according to equation (32) this would
lead to T f+ < 0 which is physically meaningless. What re-
ally happens is that two pockets get completely emptied
and we are naturally led to the two-pocket case. Before
turning to that case, for completeness we first discuss the
three-pocket case.

3.3 Three populated hole pockets

We now populate only three pockets with holes: the two
pockets with the lower energies Eα− and Eβ− as well as the
pocket with the higher energy Eα+. Of course, alternatively
one could also fill the β+-pocket. We now obtain

n = nα+ + nα− + nβ− =
1
2π
M ′(Tα+ + Tα− + T β−),

εh = εα+ + εα− + εβ−, (35)

such that equation (31) yields

μ = M +
2πn
3M ′ −

Λ

3
|c|,

Tα+ =
2πn
3M ′ −

4Λ
3
|c|,

Tα− = T β− =
2πn
3M ′ +

2Λ
3
|c|. (36)

The total energy density then takes the form

ε = ε0 + εm + εh = ε0 + 2ρs|c|2 + εα+ + εα− + εβ−

= ε0 + 2ρs|c|2 +
(

M − Λ

3
|c|

)

n+
πn2

3M ′

− 2
3π
M ′Λ2|c|2. (37)
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For 3πρs > M ′Λ2 the energy density is bounded from
below and its minimum is located at

|c| =
π

4
Λn

3πρs −M ′Λ2
. (38)

As mentioned before, |c| determines the spiral pitch, whose
inverse is the length scale of the spiral. The resulting en-
ergy density in the three-pocket case takes the form

ε3 = ε0 +Mn+
π

3M ′

(

1 − 1
8

M ′Λ2

3πρs −M ′Λ2

)

n2. (39)

It is energetically less favorable than the homogeneous
phase because ε3 > ε4 for 2πρs > M ′Λ2. For 2πρs < M ′Λ2

one obtains Tα+ < 0 which is unphysical. In fact, the α+-
pocket is then completely emptied and we are again led
to investigating the two-pocket case.

3.4 Two populated hole pockets

We now populate only two pockets with holes. These are
necessarily the pockets with the lower energies Eα− and
Eβ−. In this case we have

n = nα− + nβ− =
1
2π
M ′(Tα− + T β−), εh = εα− + εβ−, (40)

and thus equation (31) now implies

μ = M +
πn

M ′ − Λ|c|, Tα− = T β− =
πn

M ′ . (41)

The total energy density then takes the form

ε = ε0 + εm + εh = ε0 + 2ρs|c|2 + εα− + εβ−

= ε0 + 2ρs|c|2 + (M − Λ|c|)n+
πn2

2M ′ . (42)

The energy density is bounded from below and has its
minimum at

|c| =
Λ

4ρs
n. (43)

The value at the minimum is given by

ε2 = ε0 +Mn+
(

π

2M ′ −
Λ2

8ρs

)

n2. (44)

The two-pocket spiral phase is less stable than the homo-
geneous phase if ε2 > ε4, which is the case for 2πρs >
M ′Λ2. As we have seen, both the three- and the four-
pocket calculation become meaningless for 2πρs < M ′Λ2,
because the kinetic energies T f+ then become negative
which is unphysical. The two-pocket calculation, on the
other hand, continues to make sense for 2πρs < M ′Λ2.

3.5 One populated hole pocket

Finally, let us populate only one hole pocket, say the states
with energy Eα−. Of course, alternatively one could also
occupy the β−-pocket. One now obtains

Tα− =
2πn
M ′ . (45)

The total energy density then takes the form

ε = ε0 + εm + εh = ε0 + 2ρs|c|2 + εα−

= ε0 + 2ρs|c|2 + (M − Λ|c|)n+
πn2

M ′ , (46)

which is minimized for

|c| =
Λ

4ρs
n, (47)

and the corresponding energy density takes the form

ε1 = ε0 +Mn+
(

π

M ′ −
Λ2

8ρs

)

n2. (48)

The one-pocket spiral is always energetically less favorable
than the two-pocket spiral.

4 Inclusion of 4-fermion couplings
in perturbation theory

In this section the 4-fermion contact interactions are in-
corporated in perturbation theory. Depending on the mi-
croscopic system in question, the 4-fermion couplings may
or may not be small. If they are large, the result of the
perturbative calculation should not be trusted. In that
case, one could still perform a variational calculation. In
this work we limit ourselves to first order perturbation
theory. We will distinguish four cases: the homogeneous
phase, the three-pocket spiral, the two-pocket spiral, and
the one-pocket spiral. Finally, depending on the values of
the low-energy parameters, we determine which phase is
energetically favorable.

4.1 Four-pocket case

Let us first consider the homogeneous phase. The pertur-
bation of the Hamiltonian due to the leading 4-fermion
contact terms is given by

ΔH =
∫

d2x
∑

s=+,−

[G1

2
(Ψα†s Ψαs Ψ

α†
−sΨ

α
−s

+ Ψβ†s Ψβs Ψ
β†
−sΨ

β
−s) +G2Ψ

α†
s Ψαs Ψ

β†
s Ψβs

+G3Ψ
α†
s Ψαs Ψ

β†
−sΨ

β
−s

]

. (49)

It should be noted that Ψf†s (x) and Ψfs (x) again are
fermion creation and annihilation operators (and not
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Grassmann numbers). In the homogeneous phase the
fermion density is equally distributed among the two spin
orientations and the two flavors such that

〈Ψα†+ Ψα+〉 = 〈Ψα†− Ψα−〉 = 〈Ψβ†+ Ψβ+〉 = 〈Ψβ†− Ψβ−〉 =
n

4
. (50)

The brackets denote expectation values in the unper-
turbed state. Since the fermions are uncorrelated, for
f �= f ′ or s �= s′ one has

〈Ψf†s Ψfs Ψ
f ′†
s′ Ψf

′
s′ 〉 = 〈Ψf†s Ψfs 〉〈Ψf

′†
s′ Ψf

′
s′ 〉. (51)

Taking the 4-fermion contact terms into account in first
order perturbation theory, the total energy density of
equation (34) receives an additional contribution and now
reads

ε4 = ε0 +Mn+
πn2

4M ′ +
1
8
(G1 +G2 +G3)n2. (52)

4.2 Three-pocket case

For a spiral aligned along the 1-direction (c1 > 0, c2 =
0) with c3i = 0 the eigenvectors of the single-particle
Hamiltonian of equation (20) corresponding to the energy
eigenvalues Ef±(p) are given by

˜Ψf± =
1√
2
(Ψf− ± iΨf+) ⇒

Ψf− =
1√
2
(˜Ψf+ + ˜Ψf−), Ψf+ =

1√
2i

(˜Ψf+ − ˜Ψf−). (53)

Inserting this expression in equation (49) allows us to
evaluate the expectation value 〈ΔH〉 in the unperturbed
states determined before. In the three-pocket case the
states with energies Eα−(p), Eβ−(p), as well as Eα+(p) (or
alternatively Eβ+(p)), and with p inside the respective hole
pocket are occupied and one arrives at

〈˜Ψα†+
˜Ψα+〉 =

(

1 − 1
2

M ′Λ2

3πρs −M ′Λ2

)

n

3
, 〈˜Ψβ†+

˜Ψβ+〉 = 0,

〈˜Ψα†− ˜Ψα−〉 = 〈˜Ψβ†− ˜Ψβ−〉 =
(

1 +
1
4

M ′Λ2

3πρs −M ′Λ2

)

n

3
. (54)

As a result, the energy density of equation (39) turns into

ε3 = ε0 +Mn+
π

3M ′

(

1 − 1
8

M ′Λ2

3πρs −M ′Λ2

)

n2

+
4πρs −M ′Λ2

(3πρs −M ′Λ2)2
1
32

[

8(G1 +G2 +G3)πρs

− (4G1 + 3G2 + 3G3)M ′Λ2
]

n2. (55)

4.3 Two-pocket case

In this case only the states with energy Eα−(p) and Eβ−(p)
with p inside the respective hole pocket P f− are occupied

and hence

〈˜Ψα†− ˜Ψα−〉 = 〈˜Ψβ†− ˜Ψβ−〉 =
n

2
, 〈˜Ψα†+

˜Ψα+〉 = 〈˜Ψβ†+
˜Ψβ+〉 = 0.

(56)
As a result the energy density of equation (44) turns into

ε2 = ε0 +Mn+
(

π

2M ′ −
Λ2

8ρs

)

n2 +
1
8
(G2 +G3)n2. (57)

4.4 One-pocket case

In the one-pocket case only the states with energy Eα−(p)
(or alternatively with Eβ−(p)) and with p inside the cor-
responding hole pocket are occupied so that one has

〈˜Ψα†− ˜Ψα−〉 = n, 〈˜Ψα†+
˜Ψα+〉 = 〈˜Ψβ†+

˜Ψβ+〉 = 〈˜Ψβ†− ˜Ψβ−〉 = 0.
(58)

In this case, the 4-fermion terms do not contribute to the
energy density which thus maintains the form of equa-
tion (48), i.e.

ε1 = ε0 +Mn+
(

π

M ′ −
Λ2

8ρs

)

n2. (59)

4.5 Stability ranges of various phases

Let us summarize the results of the previous subsections.
The energy densities of the various phases take the form

εi = ε0 +Mn+
1
2
κin

2. (60)

According to equation (59), (57), (55), and (52), the com-
pressibilities κi are given by

κ1 =
2π
M ′ −

Λ2

4ρs
,

κ2 =
π

M ′ −
Λ2

4ρs
+

1
4
(G2 +G3),

κ3 =
2π

3M ′

(

1 − 1
8

M ′Λ2

3πρs −M ′Λ2

)

+
4πρs −M ′Λ2

(3πρs −M ′Λ2)2
1
16

[

8(G1 +G2 +G3)πρs

− (4G1 + 3G2 + 3G3)M ′Λ2
]

,

κ4 =
π

2M ′ +
1
4
(G1 +G2 +G3). (61)

The compressibilities κi, which distinguish the various
cases and may be experimentally accessible, are shown
as functions of M ′Λ2/2πρs in Figure 6. For large values
of ρs, spiral phases cost a large amount of magnetic en-
ergy and the homogeneous phase is more stable. To be
more precise, in this regime one has κ4 < κ3 < κ2 < κ1.
Notice that κ1 is always larger than κ2 for any value of
ρs. As ρs decreases and reaches the value

ρs =
M ′Λ2

2π
+

(M ′)2Λ2G1

4π2
, (62)
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Fig. 6. The compressibilities κi as functions of M ′Λ2/2πρs

determine the stability ranges of the various phases. A homo-
geneous phase, a spiral, or an inhomogeneous phase are ener-
getically favorable, for large, intermediate, and small values of
ρs, respectively.

at leading order in the 4-fermion couplings one finds κ2 =
κ3 = κ4. For smaller values of ρs, the two-pocket spiral
is energetically favored until κ2 becomes negative and the
system becomes unstable against the formation of spatial
inhomogeneities of a yet undetermined type.

It should be pointed out again that these results ap-
ply only if the 4-fermion contact interactions are weak.
Even if the 4-fermion couplings are indeed small, the re-
sults presented in this work do not necessarily reveal the
true nature of the ground state. Due to the variational
nature of the calculation, one cannot exclude that the
phases that we found may still be unstable in certain pa-
rameter regions. It is instructive to compare the results
presented here with the results obtained in the square lat-
tice case [54]. Qualitatively the stability ranges of various
phases are the same for both lattice geometries except
that the one-pocket spiral is never energetically favored
on the honeycomb lattice while it is favorable in a small
parameter regime on the square lattice.

5 Conclusions and outlook

In this paper we have used a systematic effective field
theory for antiferromagnetic magnons and holes on the
honeycomb lattice to investigate the dynamics of holes
in the background of a staggered magnetization field. We
have limited ourselves to constant composite vector fields
vi(x)′ which implies that the fermions experience a con-
stant background field. Interestingly, unlike in the square
lattice case, due to the accidental continuous O(γ) spatial
rotation symmetry, at leading order a spiral does not have
an a priori preferred spatial direction. However, since the
O(γ) symmetry is broken explicitly by the higher-order
terms, once such terms are included, one expects the spiral
to align with a lattice direction. Finally, we investigated
the stability of spiral phases in the presence of 4-fermion

couplings. Assuming that the 4-fermion couplings can be
treated perturbatively, we have seen that, for sufficiently
large values of ρs, the homogeneous phase is energetically
favored. With decreasing ρs, a two-pocket spiral becomes
energetically more favorable. On the other hand, in con-
trast to the square lattice case, the one-pocket spiral is
never favored. For small values of ρs the two-pocket spi-
ral becomes unstable against the formation of inhomo-
geneities of a yet undetermined type. In [63] the low-
energy parameters ρs, c, and M ′ have been determined
in terms of the parameters t and J of the underlying t-J
model. It will be interesting to also determine the strength
of the hole-one-magnon vertex Λ in order to decide which
phase is realized in this model. Further applications of
the effective theory, including the one-magnon exchange
potential and the resulting two-hole bound states, are cur-
rently under investigation.
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65. F. Kämpfer, F.-J. Jiang, B. Bessire, M. Wirz, C.P.

Hofmann, U.-J. Wiese, in preparation


	Introduction
	Systematic low-energy effective field theory for magnons and holes
	Homogeneous versus spiral phases
	Inclusion of 4-fermion couplings in perturbation theory
	Conclusions and outlook
	References

