193 research outputs found

    Fluorescence Analysis of Vitamin D Receptor Status of Circulating Tumor Cells (CTCS) in Breast Cancer: From Cell Models to Metastatic Patients

    Get PDF
    The Vitamin D receptor (VDR) expressed in normal breast tissue and breast tumors has been suggested as a new prognostic biomarker in breast cancer (BC). Besides, increasing evidence supports the view that the detection of circulating tumor cells (CTCs) predicts outcome in early and metastatic BC. Consequently, an evaluation of VDR expression in the CTCs of BC patients may allow optimization of their treatment. As an attempt to profile and subtype the CTCs of metastatic patients, we established an innovative fluorescence technique using nine BC cell lines to visualize, define, and compare their individual VDR status. Afterwards, we tested the CTC presence and VDR expression in blood samples (cytospins) collected from 23 metastatic BC patients. The results demonstrated major differences in the VDR levels among the nine cell lines, and VDR positive CTCs were detected in 46% of CTC-positive patients, with a total of 42 CTCs individually analyzed. Due to the limited number of patients in this study, no correlation between VDR expression and BC subtype classification (according to estrogen receptor (ER), progesterone receptor (PR) and HER2) could be determined, but our data support the view that VDR evaluation is a potential new prognostic biomarker to help in the optimization of therapy management for BC patients

    Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Get PDF
    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA;SEONLA-BSA),or with dextran (SEONDEX). Both micronuclei testing and the detection of H2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system

    Histone H3 Lysine 9 Acetylation is Downregulated in GDM Placentas and Calcitriol Supplementation Enhanced This Effect

    Get PDF
    Despite the ever-rising incidence of Gestational Diabetes Mellitus (GDM) and its implications for long-term health of mothers and offspring, the underlying molecular mechanisms remain to be elucidated. To contribute to this, the present study's objectives are to conduct a sex-specific analysis of active histone modifications in placentas affected by GDM and to investigate the effect of calcitriol on trophoblast cell's transcriptional status. The expression of Histone H3 lysine 9 acetylation (H3K9ac) and Histone H3 lysine 4 trimethylation (H3K4me3) was evaluated in 40 control and 40 GDM (20 male and 20 female each) placentas using immunohistochemistry and immunofluorescence. The choriocarcinoma cell line BeWo and primary human villous trophoblast cells were treated with calcitriol (48 h). Thereafter, western blots were used to quantify concentrations of H3K9ac and the transcription factor FOXO1. H3K9ac expression was downregulated in GDM placentas, while H3K4me3 expression was not significantly different. Cell culture experiments showed a slight downregulation of H3K9ac after calcitriol stimulation at the highest concentration. FOXO1 expression showed a dose-dependent increase. Our data supports previous research suggesting that epigenetic dysregulations play a key role in gestational diabetes mellitus. Insufficient transcriptional activity may be part of its pathophysiology and this cannot be rescued by calcitriol

    Galectins-1,-3, and-7 Are Prognostic Markers for Survival of Ovarian Cancer Patients

    Get PDF
    There is a tremendous need for developing new useful prognostic factors in ovarian cancer. Galectins are a family of carbohydrate binding proteins which have been suggested to serve as prognostic factors for various cancer types. In this study, the presence of Galectin-1, -3, and -7 was investigated in 156 ovarian cancer specimens by immunochemical staining. Staining was evaluated in the cytoplasm and nucleus of cancer cells as well as the peritumoral stroma using a semi quantitative score (Remmele (IR) score). Patients' overall survival was compared between different groups of Galectin expression. Galectin (Gal)-1 and -3 staining was observed in the peritumoral stroma as well as the nucleus and cytoplasm of tumor cells, while Gal-7 was only present in the cytoplasm of tumor cells. Patients with Gal-1 expression in the cytoplasm or high Gal-1 expression in the peritumoral stroma showed reduced overall survival. Nuclear Gal-3 staining correlated with a better outcome. We observed a significantly reduced overall survival for cases with high Gal-7 expression and a better survival for Gal-7 negative cases, when compared to cases with low expression of Gal-7. We were able to show that both tumor and stroma staining of Gal-1 could serve as negative prognostic factors for ovarian cancer. We were able to confirm cytoplasmic Gal-7 as a negative prognostic factor. Gal-3 staining in the nucleus could be a new positive prognosticator for ovarian cancer

    Overall Survival of Ovarian Cancer Patients Is Determined by Expression of Galectins-8 and-9

    Get PDF
    The evaluation of new prognostic factors that can be targeted in ovarian cancer diagnosis and therapy is of the utmost importance. Galectins are a family of carbohydrate binding proteins with various implications in cancer biology. In this study, the presence of galectin (Gal)-8 and -9 was investigated in 156 ovarian cancer samples using immunohistochemistry (IHC). Staining was evaluated using semi-quantitative immunoreactivity (IR) scores and correlated to clinical and pathological data. Different types of galectin expression were compared with respect to disease-free survival (DFS) and overall survival (OS). Gal-8 served as a new positive prognostic factor for the OS and DFS of ovarian cancer patients. Gal-9 expression determined the DFS and OS of ovarian cancer patients in two opposing waysmoderate Gal-9 expression was correlated with a reduced outcome as compared to Gal-9 negative cases, while patients with high Gal-9 expression showed the best outcome

    Fermi surface of MoO2 studied by angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations

    Full text link
    A comprehensive study of the electronic properties of monoclinic MoO2 from both an experimental and a theoretical point of view is presented. We focus on the investigation of the Fermi body and the band structure using angle resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations. For the latter, the new full-potential augmented spherical wave (ASW) method has been applied. Very good agreement between the experimental and theoretical results is found. In particular, all Fermi surface sheets are correctly identified by all three approaches. Previous controversies concerning additional hole-like surfaces centered around the Z- and B-point could be resolved; these surfaces were an artefact of the atomic-sphere approximation used in the old calculations. Our results underline the importance of electronic structure calculations for the understanding of MoO2 and the neighbouring rutile-type early transition-metal dioxides. This includes the low-temperature insulating phases of VO2 and NbO2, which have crystal structures very similar to that of molybdenum dioxide and display the well-known prominent metal-insulator transitions.Comment: 17 pages, 21 figures, more information at http://www.physik.uni-augsburg.de/~eyert

    Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer-Evaluation of Several Markers with Real-Time Reverse Transcription-PCR

    Get PDF
    It is widely known that cells from epithelial tumors, e. g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs) in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19). B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy

    Deep learning-based denoising streamed from mobile phones improves speech-in-noise understanding for hearing aid users

    Full text link
    The hearing loss of almost half a billion people is commonly treated with hearing aids. However, current hearing aids often do not work well in real-world noisy environments. We present a deep learning based denoising system that runs in real time on iPhone 7 and Samsung Galaxy S10 (25ms algorithmic latency). The denoised audio is streamed to the hearing aid, resulting in a total delay of around 75ms. In tests with hearing aid users having moderate to severe hearing loss, our denoising system improves audio across three tests: 1) listening for subjective audio ratings, 2) listening for objective speech intelligibility, and 3) live conversations in a noisy environment for subjective ratings. Subjective ratings increase by more than 40%, for both the listening test and the live conversation compared to a fitted hearing aid as a baseline. Speech reception thresholds, measuring speech understanding in noise, improve by 1.6 dB SRT. Ours is the first denoising system that is implemented on a mobile device, streamed directly to users' hearing aids using only a single channel as audio input while improving user satisfaction on all tested aspects, including speech intelligibility. This includes overall preference of the denoised and streamed signal over the hearing aid, thereby accepting the higher latency for the significant improvement in speech understanding

    Histone H3 Acetyl K9 and Histone H3 Tri Methyl K4 as Prognostic Markers for Patients with Cervical Cancer

    Get PDF
    Chromatin remodeling alters gene expression in carcinoma tissue. Although cervical cancer is the fourth most common cancer in women worldwide, a systematic study about the prognostic value of specific changes in the chromatin structure, such as histone acetylation or histone methylation, is missing. In this study, the expression of histone H3 acetyl K9, which is known to denote active regions at enhancers and promoters, and histone H3 tri methyl K4, which preferentially identifies active gene promoters, were examined as both show high metastatic potential. A panel of patients with cervical cancer was selected and the importance of the histone modifications concerning survival-time (overall survival and relapse-free survival) was analyzed in 250 cases. Histone H3 acetyl K9 staining was correlated with low grading, low FIGO (TNM classification and the International Federation of Gynecology and Obstetrics) status, negative N-status and low T-status in cervical cancer, showing a higher expression in adenocarcinoma than in squamous cell carcinoma. Cytoplasmic expression of histone H3 tri methyl K4 in a cervical cancer specimen was correlated with advanced T-status and poor prognosis. While cytoplasmic H3K4me3 expression seemed to be a marker of relapse-free survival, nuclear expression showed a correlation to poor prognosis in overall survival. Within this study, we analyzed the chemical modification of two histone proteins that are connected to active gene expression. Histone H3 acetyl K9 was found to be an independent marker of overall survival. Histone H3 tri methyl K4 was correlated with poor prognosis and it was found to be an independent marker of relapse-free survival. Therefore, we could show that chromatin remodeling plays an important role in cervical cancer biology
    • …
    corecore