133 research outputs found
Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates
BACKGROUND: Bacillus anthracis and Bacillus cereus can usually be distinguished by standard microbiological methods (e.g., motility, hemolysis, penicillin susceptibility and susceptibility to gamma phage) and PCR. However, we have identified 23 Bacillus spp. isolates that gave discrepant results when assayed by standard microbiological methods and PCR. We used multiple-locus variable-number tandem repeat analysis (MLVA), multiple-locus sequence typing (MLST), and phenotypic analysis to characterize these isolates, determine if they cluster phylogenetically and establish whether standard microbiological identification or PCR were associated with false positive/negative results. RESULTS: Six isolates were LRN real-time PCR-positive but resistant to gamma phage; MLVA data supported the identification of these isolates as gamma phage-resistant B. anthracis. Seventeen isolates were LRN real-time PCR-negative but susceptible to gamma phage lysis; these isolates appear to be a group of unusual gamma phage-susceptible B. cereus isolates that are closely related to each other and to B. anthracis. All six B. anthracis MLVA chromosomal loci were amplified from one unusual gamma phage-susceptible, motile, B. cereus isolate (although the amplicons were atypical sizes), and when analyzed phylogenetically, clustered with B. anthracis by MLST. CONCLUSION: MLVA and MLST aided in the identification of these isolates when standard microbiological methods and PCR could not definitely identify or rule out B. anthracis. This study emphasized the need to perform multiple tests when attempting to identify B. anthracis since relying on a single assay remains problematic due to the diverse nature of bacteria
Molecular Subtyping of Bacillus anthracis and the 2001 Bioterrorism-Associated Anthrax Outbreak, United States
Molecular subtyping of Bacillus anthracis played an important role in differentiating and identifying anthrax strains during the 2001 bioterrorism-associated outbreak. Because B. anthracis has a low level of genetic variability, only a few subtyping methods, with varying reliability, exist. We initially used multiple-locus variable-number tandem repeat analysis (MLVA) to subtype 135 B. anthracis isolates associated with the outbreak. All isolates were determined to be of genotype 62, the same as the Ames strain used in laboratories. We sequenced the protective antigen gene (pagA) from 42 representative outbreak isolates and determined they all had a pagA sequence indistinguishable from the Ames strain (PA genotype I). MLVA and pagA sequencing were also used on DNA from clinical specimens, making subtyping B. anthracis possible without an isolate. Use of high-resolution molecular subtyping determined that all outbreak isolates were indistinguishable by the methods used and probably originated from a single source. In addition, subtyping rapidly identified laboratory contaminants and non-outbreak–related isolates
Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing
<p>Abstract</p> <p>Background</p> <p><it>Bacillus cereus </it>is most commonly associated with foodborne illness (diarrheal and emetic) but is also an opportunistic pathogen that can cause severe and fatal infections. Several multilocus sequence typing (MLST) schemes have recently been developed to genotype <it>B. cereus </it>and analysis has suggested a clonal or weakly clonal population structure for <it>B. cereus </it>and its close relatives <it>B. anthracis </it>and <it>B. thuringiensis</it>. In this study we used MLST to determine if <it>B. cereus </it>isolates associated with illnesses of varying severity (e.g., severe, systemic vs. gastrointestinal (GI) illness) were clonal or formed clonal complexes.</p> <p>Results</p> <p>A retrospective analysis of 55 clinical <it>B. cereus </it>isolates submitted to the Centers for Disease Control and Prevention between 1954 and 2004 was conducted. Clinical isolates from severe infections (n = 27), gastrointestinal (GI) illness (n = 18), and associated isolates from food (n = 10) were selected for analysis using MLST. The 55 isolates were diverse and comprised 38 sequence types (ST) in two distinct clades. Of the 27 isolates associated with serious illness, 13 clustered in clade 1 while 14 were in clade 2. Isolates associated with GI illness were also found throughout clades 1 and 2, while no isolates in this study belonged to clade 3. All the isolates from this study belonging to the clade 1/cereus III lineage were associated with severe disease while isolates belonging to clade1/cereus II contained isolates primarily associated with severe disease and emetic illness. Only three STs were observed more than once for epidemiologically distinct isolates.</p> <p>Conclusion</p> <p>STs of clinical <it>B. cereus </it>isolates were phylogenetically diverse and distributed among two of three previously described clades. Greater numbers of strains will need to be analyzed to confirm if specific lineages or clonal complexes are more likely to contain clinical isolates or be associated with specific illness, similar to <it>B. anthracis </it>and emetic <it>B. cereus </it>isolates.</p
Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia
<p>Abstract</p> <p>Background</p> <p>Brucellosis is primarily a zoonotic disease caused by <it>Brucella </it>species. There are currently ten <it>Brucella </it>spp. including the recently identified novel <it>B. inopinata </it>sp. isolated from a wound associated with a breast implant infection. In this study we report on the identification of an unusual <it>Brucella</it>-like strain (BO2) isolated from a lung biopsy in a 52-year-old patient in Australia with a clinical history of chronic destructive pneumonia.</p> <p>Results</p> <p>Standard biochemical profiles confirmed that the unusual strain was a member of the <it>Brucella </it>genus and the full-length 16S rRNA gene sequence was 100% identical to the recently identified <it>B. inopinata </it>sp. nov. (type strain BO1<sup>T</sup>). Additional sequence analysis of the <it>recA, omp2a </it>and <it>2b </it>genes; and multiple locus sequence analysis (MLSA) demonstrated that strain BO2 exhibited significant similarity to the <it>B. inopinata </it>sp. compared to any of the other <it>Brucella </it>or <it>Ochrobactrum </it>species. Genotyping based on multiple-locus variable-number tandem repeat analysis (MLVA) established that the BO2 and BO1<sup>T</sup>strains form a distinct phylogenetic cluster separate from the other <it>Brucella </it>spp.</p> <p>Conclusion</p> <p>Based on these molecular and microbiological characterizations, we propose that the BO2 strain is a novel lineage of the newly described <it>B. inopinata </it>species.</p
Two-Component Direct Fluorescent-Antibody Assay for Rapid Identification of Bacillus anthracis
A two-component direct fluorescent-antibody (DFA) assay, using fluorescein-labeled monoclonal antibodies specific to the Bacillus anthracis cell wall (CW-DFA) and capsule (CAP-DFA) antigens, was evaluated and validated for rapid identification of B. anthracis. We analyzed 230 B. anthracis isolates; 228 and 229 were positive by CW-DFA and CAP-DFA assays, respectively. We also tested 56 non–B. anthracis strains; 10 B. cereus and 2 B. thuringiensis were positive by the CW-DFA assay, and 1 B. megaterium strain was positive by CAP-DFA. Analysis of the combined DFA results identified 227 of 230 B. anthracis isolates; all 56 strains of the other Bacillus spp. were negative. Both DFA assays tested positive on 14 of 26 clinical specimens from the 2001 anthrax outbreak investigation. The two-component DFA assay is a sensitive, specific, and rapid confirmatory test for B. anthracis in cultures and may be useful directly on clinical specimens
Molecular Epidemiology of Anthrax Cases Associated with Recreational Use of Animal Hides and Yarn in the United States
To determine potential links between the clinical isolate to animal products and their geographic origin, we genotyped (MLVA-8, MVLA-15, and canSNP analysis) 80 environmental and 12 clinical isolates and 2 clinical specimens from five cases of anthrax (California in 1976 [n = 1], New York in 2006 [n = 1], Connecticut in 2007 [n = 2], and New Hampshire in 2009[n = 1]) resulting from recreational handling of animal products. For the California case, four clinical isolates were identified as MLVA-8 genotype (GT) 76 and in the canSNP A.Br.Vollum lineage, which is consistent with the Pakistani origin of the yarn. Twenty eight of the California isolates were in the A.Br.Vollum canSNP lineage and one isolate was in the A.Br. 003/004 canSNP sub-group. All 52 isolates and both clinical specimens related to the New York and Connecticut cases were MLVA-8 GT 1. The animal products associated with the NY and CT cases were believed to originate from West Africa, but no isolates from this region are available to be genotyped for comparison. All isolates associated with the New Hampshire case were identical and had a new genotype (GT 149). Isolates from the NY, CT and NH cases diverge from the established canSNP phylogeny near the base of the A.Br.011/009. This report illustrates the power of the current genotyping methods and the dramatically different epidemiological conditions that can lead to infections (i.e., contamination by a single genotype versus widespread contamination of numerous genotypes). These cases illustrate the need to acquire and genotype global isolates so that accurate assignments can be made about isolate origins
Comparison of two multiple-locus variable-number tandem-repeat analysis methods for molecular strain typing of human Brucella melitensis isolates from the Middle East
Brucella species are highly monomorphic, with minimal genetic variation among species, hindering the development of reliable subtyping tools for epidemiologic and phylogenetic analyses. Our objective was to compare two distinct multiple-locus variable-number tandem-repeat analysis (MLVA) subtyping methods on a collection of 101 Brucella melitensis isolates from sporadic human cases of brucellosis in Egypt (n = 83), Qatar (n = 17), and Libya (n = 1). A gel-based MLVA technique, MLVA-15IGM, was compared to an automated capillary electrophoresis-based method, MLVA-15NAU, with each MLVA scheme examining a unique set of variable-number tandem repeats. Both the MLVAIGM and MLVANAU methods were highly discriminatory, resolving 99 and 101 distinct genotypes, respectively, and were able to largely separate genotypes from Egypt and Qatar. The MLVA-15NAU scheme presented higher strain-to-strain diversity in our test population than that observed with the MLVA-15IGM assay. Both schemes were able to genetically correlate some strains originating from the same hospital or region within a country. In addition to comparing the genotyping abilities of these two schemes, we also compared the usability, limitations, and advantages of the two MLVA systems and their applications in the epidemiological genotyping of human B. melitensis strains
Pre-columbian origins for North American anthrax
Disease introduction into the New World during colonial expansion is well documented and had a major impact on indigenous populations; however, few diseases have been associated with early human migrations into North America. During the late Pleistocene epoch, Asia and North America were joined by the Beringian Steppe ecosystem which allowed animals and humans to freely cross what would become a water barrier in the Holocene. Anthrax has clearly been shown to be dispersed by human commerce and trade in animal products contaminated with Bacillus anthracis spores. Humans appear to have brought B. anthracis to this area from Asia and then moved it further south as an ice-free corridor opened in central Canada ~13,000 ybp. In this study, we have defined the evolutionary history of Western North American (WNA) anthrax using 2,850 single nucleotide polymorphisms (SNPs) and 285 geographically diverse B. anthracis isolates. Phylogeography of the major WNA B. anthracis clone reveals ancestral populations in northern Canada with progressively derived populations to the south; the most recent ancestor of this clonal lineage is in Eurasia. Our phylogeographic patterns are consistent with B. anthracis arriving with humans via the Bering Land Bridge. This northern-origin hypothesis is highly consistent with our phylogeographic patterns and rates of SNP accumulation observed in current day B. anthracis isolates. Continent-wide dispersal of WNA B. anthracis likely required movement by later European colonizers, but the continent's first inhabitants may have seeded the initial North American populations
- …