26,571 research outputs found

    Can only flavor-nonsinglet H dibaryons be stable against strong decays?

    Get PDF
    Using the QCD sum rule approach, we show that the flavor-nonsinglet HH dibaryon states with Jπ=1+^{\pi} = 1^+, Jπ=0+^{\pi} = 0^+, I=1 (27plet) are nearly degenerate with the Jπ=0+^{\pi} = 0^+, I=0 singlet H0H_0 dibaryon, which has been predicted to be stable against strong decay, but has not been observed. Our calculation, which does not require an instanton correction, suggests that the H0H_0 is slightly heavier than these flavor-nonsinglet HHs over a wide range of the parameter space. If the singlet H0H_0 mass lies above the ΛΛ\Lambda \Lambda threshold (2231~MeV), then the strong interaction breakup to ΛΛ\Lambda \Lambda would produce a very broad resonance in the ΛΛ\Lambda \Lambda invariant mass spectrum which would be very difficult to observe. On the other hand, if these flavor-nonsinglet J=0 and 1 HH dibaryons are also above the ΛΛ\Lambda \Lambda threshold, but below the Ξ0n\Xi^0n breakup threshold (2254 MeV), then because the direct, strong interaction decay to the ΛΛ\Lambda \Lambda channel is forbidden, these flavor-nonsinglet states might be more amenable to experimental observation. The present results allow a possible reconciliation between the reported observation of ΛΛ\Lambda \Lambda hypernuclei, which argue against a stable H0H_0, and the possible existence of HH dibaryons in general.Comment: 10 pages, 2 figure

    Relatório de Gestão: 2006.

    Get PDF
    bitstream/CNPUV/9651/1/doc067.pd

    Multi-excitonic complexes in single InGaN quantum dots

    Full text link
    Cathodoluminescence spectra employing a shadow mask technique of InGaN layers grown by metal organic chemical vapor deposition on Si(111) substrates are reported. Sharp lines originating from InGaN quantum dots are observed. Temperature dependent measurements reveal thermally induced carrier redistribution between the quantum dots. Spectral diffusion is observed and was used as a tool to correlate up to three lines that originate from the same quantum dot. Variation of excitation density leads to identification of exciton and biexciton. Binding and anti-binding complexes are discovered.Comment: 3 pages, 4 figure

    General graviton exchange graph for four point functions in the AdS/CFT correspondence

    Get PDF
    In this note we explicitly compute the graviton exchange graph for scalar fields with arbitrary conformal dimension \Delta in arbitrary spacetime dimension d. This results in an analytical function in \Delta as well as in d.Comment: 14 pages, 2 figure

    Running coupling and mass anomalous dimension of SU(3) gauge theory with two flavors of symmetric-representation fermions

    Full text link
    We have measured the running coupling constant of SU(3) gauge theory coupled to Nf=2 flavors of symmetric representation fermions, using the Schrodinger functional scheme. Our lattice action is defined with hypercubic smeared links which, along with the larger lattice sizes, bring us closer to the continuum limit than in our previous study. We observe that the coupling runs more slowly than predicted by asymptotic freedom, but we are unable to observe fixed point behavior before encountering a first order transition to a strong coupling phase. This indicates that the infrared fixed point found with the thin-link action is a lattice artifact. The slow running of the gauge coupling permits an accurate determination of the mass anomalous dimension for this theory, which we observe to be small, gamma_m < 0.6, over the range of couplings we can reach. We also study the bulk and finite-temperature phase transitions in the strong coupling region.Comment: 17 pages, 16 figures. Substantial modifications to explain why the fat-link result for the beta function supersedes our thin-link result; also updated the phase diagram to reflect additional numerical work. Added references. Final versio
    • …
    corecore