33,723 research outputs found
'TIDieR-ing up' the reporting of interventions in stroke research:The importance of knowing what is in the 'black box'
Evidence-based interventions cannot be provided unless there is a clear understanding of what the intervention is. Many published randomized trials, systematic reviews, and guidelines contain incomplete intervention descriptions. For non-pharmacological interventions, such as stroke rehabilitation, the reporting is particularly poor. Contributors to this problem include lack of attention to this issue and awareness of what constitutes a complete intervention description by authors, reviewers, journals, and editors. Part of the solution is for authors to follow guidance about how to describe interventions, such as the Template for Intervention Description and Replication statement. Improving stroke interventions reporting will remove one of the current barriers to evidence-based care. </jats:p
Inelastic relaxation and noise temperature in S/N/S junctions
We studied electronic relaxation in long diffusive superconductor / normal
metal / superconductor (S/N/S) junctions by means of current noise and
transport measurements down to very low temperature (100mK). Samples with
normal metal lengths of 4, 10 and 60 micrometer have been investigated. In all
samples the shot noise increases very rapidly with the voltage. This is
interpreted in terms of enhanced heating of the electron gas confined between
the two S/N interfaces. Experimental results are analyzed quantitatively taking
into account electron-phonon interaction and heat transfer through the S/N
interfaces. Transport measurements reveal that in all samples the two S/N
interfaces are connected incoherently, as shown by the reentrance of the
resistance at low temperature. The complementarity of noise and transport
measurements allows us to show that the energy dependence of the reentrance at
low voltage is essentially due to the increasing effective temperature of the
quasiparticles in the normal metal.Comment: 5 pages, 4 figures, to be published in EPJ
A Simple Data-Adaptive Probabilistic Variant Calling Model
Background: Several sources of noise obfuscate the identification of single
nucleotide variation (SNV) in next generation sequencing data. For instance,
errors may be introduced during library construction and sequencing steps. In
addition, the reference genome and the algorithms used for the alignment of the
reads are further critical factors determining the efficacy of variant calling
methods. It is crucial to account for these factors in individual sequencing
experiments.
Results: We introduce a simple data-adaptive model for variant calling. This
model automatically adjusts to specific factors such as alignment errors. To
achieve this, several characteristics are sampled from sites with low mismatch
rates, and these are used to estimate empirical log-likelihoods. These
likelihoods are then combined to a score that typically gives rise to a mixture
distribution. From these we determine a decision threshold to separate
potentially variant sites from the noisy background.
Conclusions: In simulations we show that our simple proposed model is
competitive with frequently used much more complex SNV calling algorithms in
terms of sensitivity and specificity. It performs specifically well in cases
with low allele frequencies. The application to next-generation sequencing data
reveals stark differences of the score distributions indicating a strong
influence of data specific sources of noise. The proposed model is specifically
designed to adjust to these differences.Comment: 19 pages, 6 figure
SiO overcoating and polishing of CFRP telescope panels
Development of carbon fiber reinforces plastic (CFRP) panel overcoating and polishing is structured in two parts. The first part utilized a short series of experiments to determine the feasibility of overcoating and polishing CFRP panels, and the second part employes a systematic approach to optimize techniques learned. Questions which required answers in the initial investigation are summarized. Tests were performedin the Steward Observatory's 2.2 Meter Vacuum Coating Chamber and began with 3 cm square pieces of CFRP facesheet material. Next, a 10 cm square and one-inch-thick CFPR-Aluminum core panel was tested. Tests were then conducted on a 0.5-meter-square Dornier panel (QUAD 4) with CFRP facesheets on two-inch aluminum Flexcore. To complete the initial study, a previously characterized 0.5 m Dornier panel (QUAD 23) was coated and hand polished. The mirror's optical performance was not affected by the SiO coating
The 100 micron surveys in the Northern and Southern Hemispheres
Partial surveys in the far infrared in the Northern and Southern Hemispheres have covered 40% of the galactic equator and assorted regions away from the galactic plane. Approximately 120 100-micron objects are known. These are distributed extensively in galactic longitude and concentrated within + or - two degrees in galactic latitude. From this information, some general conclusions can be drawn about the sensitivity and coverage required for a general sky survey in the far infrared
Mesoscopic transition in the shot noise of diffusive S/N/S junctions
We experimentally investigated the current noise in diffusive
Superconductor/Normal metal/Superconductor junctions with lengths between the
superconducting coherence length xi_Delta and the phase coherence length L_Phi
of the normal metal (xi_Delta < L < L_Phi). We measured the shot noise over a
large range of energy covering both the regimes of coherent and incoherent
multiple Andreev reflections. The transition between these two regimes occurs
at the Thouless energy where a pronounced minimum in the current noise density
is observed. Above the Thouless energy, in the regime of incoherent multiple
Andreev reflections, the noise is strongly enhanced compared to a normal
junction and grows linearly with the bias voltage. Semi-classical theory
describes the experimental results accurately, when taking into account the
voltage dependence of the resistance which reflects the proximity effect. Below
the Thouless energy, the shot noise diverges with decreasing voltage which may
indicate the coherent transfer of multiple charges.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev. B, Rapid
Communicatio
Low temperature optical testing of CFRP telescope panels
Since 1984, low temperature optical tests were made of very lightweight mirror panels for use in balloon and space infrared and submillimeter telescopes. In order to accomplish this testing, an ambient pressure 0.5 meter test chamber operating from 20 to -80 C, developed techniques for measuring non-optical quality mirrors with phase modulation 10.6 micron interferometry, and created the interferogram reduction program. During the course of the program, nineteen mirrors from four manufactures were tested: carbon fiber reinforced plastic (CFRP) aluminum honeycomb sandwich panel mirrors, a CFRP sandwich panel with an added glass facesheet, and carbon fiber reinforced glass panels. The results of the panel development and test program are summarized
Recommended from our members
A genetic algorithm for the design of a fuzzy controller for active queue management
Active queue management (AQM) policies are those
policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the
hosts on the network borders, and the adoption of a suitable control
policy. This paper proposes the adoption of a fuzzy proportional
integral (FPI) controller as an active queue manager for Internet
routers. The analytical design of the proposed FPI controller is
carried out in analogy with a proportional integral (PI) controller,
which recently has been proposed for AQM. A genetic algorithm is
proposed for tuning of the FPI controller parameters with respect
to optimal disturbance rejection. In the paper the FPI controller
design metodology is described and the results of the comparison
with random early detection (RED), tail drop, and PI controller
are presented
- …