4,668 research outputs found

    Expression and Secretion of Endostatin in Thyroid Cancer

    Get PDF
    Background: In thyroid cancer (TC) endostatin was identified as a powerful negative regulator of tumor angiogenesis in vitro. It is currently being evaluated in phase I trials for antiangiogenic therapy in various solid tumors. The aim of this study was to evaluate endostatin expression in archival TC specimens and its secretion following stimulation with thyrotropin (TSH) and epidermal growth factor (EGF) in TC cell lines. Methods: Tissue microarrays of 44 differentiated and 7 anaplastic TC and their metastasis were immunostained for endostatin protein expression and compared with corresponding non-neoplastic thyroid tissue (NT). In vitro, six differentiated (FTC133, FTC236, HTC, HTCTSHr, XTC, and TPC1) and three anaplastic (C643, Hth74, Kat4.0) TC cell lines were evaluated for basal as well as TSH (1-100 mU/ml) and EGF stimulated (1-100 ng/ml) endostatin. Results: Endostatin was detected in all TC and more than half of the NT. Endostatin expression was more frequent and intense in differentiated as compared to anaplastic TC. In vitro, basal endostatin secretion varied between 33 ± 5 pg/ml (FTC236) and 549 ± 65 pg/ml (TPC1) and was doubled in FTC, when the ''primary'' (FTC133) was compared with the metastasis (FTC236). Some cell lines showed TSH-induced (e.g., 60% in XTC) or EGFinduced (e.g., 120% in TPC1) upregulation of endostatin secretion, while others did not, despite documented receptor expression. Conclusion: This study demonstrates endostatin expression in TC, metastasis and-less frequently and intensely-in NT, suggesting a possible association to tumor progression. In vitro, endostatin secretion of some cell lines is regulated by TSH and EGF, however the individual differences deserve further functional studies. These results support rather tumorspecific than histotype-specific expression and regulation of endostatin in TC

    How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?

    Get PDF
    This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe

    Revisiting the Glick-Rogoff Current Account Model: An Application to the Current Accounts of BRICS Countries

    Get PDF
    Understanding what drives the changes in current accounts is one of the most important macroeconomic issues for developing countries. Excessive surpluses in current accounts can trigger trade wars, and excessive deficits in current accounts can, on the other hand, induce currency crises. The Glick-Rogoff (1995, Journal of Monetary Economics) model, which emphasizes productivity shocks at home and in the world, fit well with developed economies in the 1970s and 1980s. However, the Glick-Rogoff model fits poorly when it is applied to fast-growing BRICS countries for the period including the global financial crisis. We conclude that different mechanisms of current accounts work for developed and developing countries

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other
    • …
    corecore