26,040 research outputs found

    Direct observations in the dusk hours of the characteristics of the storm-time ring current particles during the beginning of magnetic storms

    Get PDF
    The characteristic features of the initial enhancement of the storm-time ring current particles in the evening hours are consistent with flow patterns resulting from a combination of inward convection, gradient drift, and corotation which carries plasma sheet protons into low L-values near midnight and the higher energy proton component into the plasmasphere and through the evening hours. Data from four magnetic storms during the early life of Explorer 45, when the local time of apogee was in the afternoon and evening hours, show that protons with lower magnetic moments penetrate deeper into the magnetosphere until a low limit, determined by the corotation and gradient drift forces, is reached. Such particle motions produce the stable energy dependent inner boundary of the ring current protons inside the plasmapause in the dusk sector and also provide the mechanism for energy injection into the ring current region. From the analyses of the pitch angle distributions it is evident that charge exchange and wave particle interactions are not the dominant causes of this inner boundary

    Combustion instability prediction using a nonlinear bipropellant vaporization model

    Get PDF
    Combustion instability prediction using nonlinear bipropellant vaporization mode

    Ring current proton decay by charge exchange

    Get PDF
    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles

    Inference of the ring current ion composition by means of charge exchange decay

    Get PDF
    The analysis of the measured ion fluxes during the several day storm recovery period and the assumption that beside hydrogen other ions were present and that the decays were exponential in nature, it was possible to establish three separate lifetimes for the ions. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+), and He(+) in the energy and L-value range of the data. This inference technique, thus, establishes the presence of measurable and appreciable quantities of oxygen and helium ions as well as protons in the storm-time ring current. Indications that He(+) may also be present under these same conditions were found

    Motions of charged particles in the Magnetosphere under the influence of a time-varying large scale convection electric field

    Get PDF
    The motions of charged particles under the influence of the geomagnetic and electric fields were quite complex in the region of the inner magnetosphere. The Volland-Stern type large scale convection electric field was used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 measurements. A time dependence in this electric field was introduced based on the variation in Kp for actual magnetic storm conditions. The particle trajectories were computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments were allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format
    corecore