983 research outputs found
A trust-region method for stochastic variational inference with applications to streaming data
Stochastic variational inference allows for fast posterior inference in
complex Bayesian models. However, the algorithm is prone to local optima which
can make the quality of the posterior approximation sensitive to the choice of
hyperparameters and initialization. We address this problem by replacing the
natural gradient step of stochastic varitional inference with a trust-region
update. We show that this leads to generally better results and reduced
sensitivity to hyperparameters. We also describe a new strategy for variational
inference on streaming data and show that here our trust-region method is
crucial for getting good performance.Comment: in Proceedings of the 32nd International Conference on Machine
Learning, 201
A Generative Product-of-Filters Model of Audio
We propose the product-of-filters (PoF) model, a generative model that
decomposes audio spectra as sparse linear combinations of "filters" in the
log-spectral domain. PoF makes similar assumptions to those used in the classic
homomorphic filtering approach to signal processing, but replaces hand-designed
decompositions built of basic signal processing operations with a learned
decomposition based on statistical inference. This paper formulates the PoF
model and derives a mean-field method for posterior inference and a variational
EM algorithm to estimate the model's free parameters. We demonstrate PoF's
potential for audio processing on a bandwidth expansion task, and show that PoF
can serve as an effective unsupervised feature extractor for a speaker
identification task.Comment: ICLR 2014 conference-track submission. Added link to the source cod
- …