227 research outputs found
Recommended from our members
Cesarean Scar Ectopic Pregnancy: Diagnosis With Ultrasound
We present a rare case of cesarean scar ectopic pregnancy as diagnosed by transvaginal ultrasonography. Cases such as this are rare, but they are becoming more commonly detected with the growing frequency of cesarean sections, improving technology, and provider proficiency with point-of-care ultrasound. Quick identification of this dangerous diagnosis can be life saving for the patient, as the outcomes of ruptured cesarean ectopic pregnancy may include significant hemorrhage, uterine rupture, and possibly maternal death
Cross Modal Distillation for Supervision Transfer
In this work we propose a technique that transfers supervision between images
from different modalities. We use learned representations from a large labeled
modality as a supervisory signal for training representations for a new
unlabeled paired modality. Our method enables learning of rich representations
for unlabeled modalities and can be used as a pre-training procedure for new
modalities with limited labeled data. We show experimental results where we
transfer supervision from labeled RGB images to unlabeled depth and optical
flow images and demonstrate large improvements for both these cross modal
supervision transfers. Code, data and pre-trained models are available at
https://github.com/s-gupta/fast-rcnn/tree/distillationComment: Updated version (v2) contains additional experiments and result
Adversarial Discriminative Domain Adaptation
Adversarial learning methods are a promising approach to training robust deep
networks, and can generate complex samples across diverse domains. They also
can improve recognition despite the presence of domain shift or dataset bias:
several adversarial approaches to unsupervised domain adaptation have recently
been introduced, which reduce the difference between the training and test
domain distributions and thus improve generalization performance. Prior
generative approaches show compelling visualizations, but are not optimal on
discriminative tasks and can be limited to smaller shifts. Prior discriminative
approaches could handle larger domain shifts, but imposed tied weights on the
model and did not exploit a GAN-based loss. We first outline a novel
generalized framework for adversarial adaptation, which subsumes recent
state-of-the-art approaches as special cases, and we use this generalized view
to better relate the prior approaches. We propose a previously unexplored
instance of our general framework which combines discriminative modeling,
untied weight sharing, and a GAN loss, which we call Adversarial Discriminative
Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably
simpler than competing domain-adversarial methods, and demonstrate the promise
of our approach by exceeding state-of-the-art unsupervised adaptation results
on standard cross-domain digit classification tasks and a new more difficult
cross-modality object classification task
- …