29,192 research outputs found

    Spectral weight redistribution in (LaNiO3)n/(LaMnO3)2 superlattices from optical spectroscopy

    Full text link
    We have studied the optical properties of four (LaNiO3_3)n_n/(LaMnO3_3)2_2 superlattices (SL) (nn=2, 3, 4, 5) on SrTiO3_3 substrates. We have measured the reflectivity at temperatures from 20 K to 400 K, and extracted the optical conductivity through a fitting procedure based on a Kramers-Kronig consistent Lorentz-Drude model. With increasing LaNiO3_3 thickness, the SLs undergo an insulator-to-metal transition (IMT) that is accompanied by the transfer of spectral weight from high to low frequency. The presence of a broad mid-infrared band, however, shows that the optical conductivity of the (LaNiO3_3)n_n/(LaMnO3_3)2_2 SLs is not a linear combination of the LaMnO3_3 and LaNiO3_3 conductivities. Our observations suggest that interfacial charge transfer leads to an IMT due to a change in valence at the Mn and Ni sites.Comment: Accepted for publication in Phys. Rev. Lett. 5 pages, 5 figure

    Combustion instability prediction using a nonlinear bipropellant vaporization model

    Get PDF
    Combustion instability prediction using nonlinear bipropellant vaporization mode

    Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors

    Get PDF
    The capacitive behavior of TiC-derived carbon powders in two different electrolytes, NEt4BF4 in acetonitrile AN and NEt4BF4 in propylene carbonate PC, was studied using the cavity microelectrode CME technique. Comparisons of the cyclic voltammograms recorded at 10–1000 mV/s enabled correlation between adsorbed ion sizes and pore sizes, which is important for understanding the electrochemical capacitive behavior of carbon electrodes for electrical double-layer capacitor applications. The CME technique also allows a fast selection of carbon electrodes with matching pore sizes different sizes are needed for the negative and positive electrodes for the respective electrolyte system. Comparison of electrochemical capacitive behavior of the same salt, NEt4BF4, in different solvents, PC and AN, has shown that different pore sizes are required for different solvents, because only partial desolvation of ions occurs during the double-layer charging. Squeezing partially solvated ions into subnanometer pores, which are close to the desolvated ion size, may lead to distortion of the shape of cyclic voltammograms

    Aspects of the Rocknest Formation, Asiak Thrust-fold Belt, Wopmay Orogen, District of Mackenzie

    Get PDF
    Field study of the Rocknest Formation during 1981 and 1982, and laboratory study during the fall of 1982 has produced several interesting findings which are summarized in this report. Topics are: 1) subdivision of Rocknest Formation into ten informal members, 2) Rocknest shelf cyclicity and paleogeography, 3) shelf-to- slope transitions, 4) paleoclimate, and 5) evidence of possible microbial remnants in stromatolite bioherms of the Odjick/Rocknest transition beds. Future fieldwork is outlined

    Quantitative Paleobathymetry of Early Proterozoic (1.9 B.Y.) Continental Slope, Rocknest Formation, Wopmay Orogen, N.W.T., Canada

    Get PDF
    The Rocknest Formation is an early Proterozoic (1.9 b.y.) westward-facing, rimmed carbonate shelf that evolved from a ramp developed on quartzites of the underlying Odjick Formation. Shelf interior facies are cyclic peritidal dolomites; shelf edge facies are reefal stromatolitic boundstones and intraclast/ooid grainstones, and slope facies are turbidites, slope breccias, and shelf edge breccias. The carbonates are overlain by black shales and graywackes of the Recluse Group

    Near Infrared Spectroscopic Monitoring During Cardiopulmonary Exercise Testing Detects Anaerobic Threshold

    Get PDF
    Cardiopulmonary exercise testing (CPET) provides assessment of the integrative responses involving the pulmonary, cardiovascular, and skeletal muscle systems. Application of exercise testing remains limited to children who are able to understand and cooperate with the exercise protocol. Near-infrared spectroscopy (NIRS) provides a noninvasive, continuous method to monitor regional tissue oxygenation (rSO2). Our specific aim was to predict anaerobic threshold (AT) during CPET noninvasively using two-site NIRS monitoring. Achievement of a practical noninvasive technology for estimating AT will increase the compatibility of CPET. Patients without structural or acquired heart disease were eligible for inclusion if they were ordered to undergo CPET by a cardiologist. Data from 51 subjects was analyzed. The ventilatory anaerobic threshold (VAT) was computed on VCO2 and respiratory quotient post hoc using the standard V-slope method. The inflection points of the regional rSO2 time-series were identified as the noninvasive regional NIRS AT for each of the two monitored regions (cerebral and kidney). AT calculation made using an average of kidney and brain NIRS matched the calculation made by VAT for the same patient. Two-site NIRS monitoring of visceral organs is a predictor of AT

    Ultrahigh Transmission Optical Nanofibers

    Full text link
    We present a procedure for reproducibly fabricating ultrahigh transmission optical nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions of 99.95 ± \pm 0.02%, which represents a loss from tapering of 2.6  × \,\times \, 10−5^{-5} dB/mm when normalized to the entire stretch. When controllably launching the next family of higher-order modes on a fiber with 195 mm stretch, we achieve a transmission of 97.8 ±\pm 2.8%, which has a loss from tapering of 5.0  × \,\times \, 10−4^{-4} dB/mm when normalized to the entire stretch. Our pulling and transfer procedures allow us to fabricate optical nanofibers that transmit more than 400 mW in high vacuum conditions. These results, published as parameters in our previous work, present an improvement of two orders of magnitude less loss for the fundamental mode and an increase in transmission of more than 300% for higher-order modes, when following the protocols detailed in this paper. We extract from the transmission during the pull, the only reported spectrogram of a fundamental mode launch that does not include excitation to asymmetric modes; in stark contrast to a pull in which our cleaning protocol is not followed. These results depend critically on the pre-pull cleanliness and when properly following our pulling protocols are in excellent agreement with simulations.Comment: 32 pages, 10 figures, accepted to AIP Advance
    • …
    corecore