34 research outputs found

    A mouse bleeding model to study oral anticoagulants

    Get PDF
    New oral anticoagulants to reduce the incidence of thrombosis have recently become available. When compared to the existing therapy, warfarin, these novel agents have similar efficacy with a reduced risk of spontaneous bleeding. However, these novel agents have been associated with significant, even fatal, bleeding following trauma. Reversal agents are being developed that bind and neutralize these oral anticoagulants. However, these are not yet available. Another strategy is to increase thrombin generation by administration of “bypassing” agents such as prothrombin complex concentrates or factor VIIa. Several animal models have been used to model the hemostatic defect induced by the thrombin inhibitor dabigatran. A rat tail injury model, a rabbit cuticle bleeding model, and a rabbit kidney laceration model have all been reported to show increased bleeding, but with supratherapeutic doses of dabigatran. A mouse tail transection model has been reported to reflect increased bleeding at peak therapeutic dabigatran levels. We found that the Whinna saphenous vein hemostasis model reliably reflects a hemostatic defect at therapeutic levels of dabigatran. This model can potentially reflect the effects of reversal or bypassing agents

    Impact of Non–Vitamin K Antagonist Oral Anticoagulants From a Basic Science PerspectiveHighlights

    Get PDF
    The biochemical properties of the non-vitamin K antagonist oral anticoagulants (NOACs) and their differences from the mechanism of action of vitamin K antagonists contribute to their properties as anticoagulants. These properties include as follows: (1) Inhibiting a single protease is much less effective at inhibiting coagulation than is inhibiting at multiple steps. Thus, the dose-response relationship between NOAC level and intensity of anticoagulation is shallower and more linear than that of vitamin K antagonists. This partially accounts for the greater safety of NOACs than vitamin K antagonists reported in some studies. (2) Because they are small molecules, NOACs can reach their target proteases in locations that plasma protease inhibitors, such as antithrombin, cannot. (3) NOACs compete with substrates for binding at the active site of the target protease and that binding is reversible. When the drug level falls, the drug dissociates from its target, and protease activity is restored. Thus, there is the possibility of a rebound in procoagulant activity if the drug is abruptly terminated. (4) The effects of a NOAC can be overcome by increasing the amount of substrate available for the target protease or the amount of protease produced. This property may contribute to the safety of NOACs and their potential reversibility by coagulation factor concentrates. The biochemical properties of NOACs contribute to their suitability for use in conditions that require a predictable moderate degree of anticoagulation when administered orally at a consistent dose. Their effects can be overcome by a sufficiently strong procoagulant stimulus. This characteristic likely contributes to their generally reduced risk of serious bleeding. However, they are not well suited for use in settings that require a profound degree of anticoagulation

    Wound healing in hemophilia B mice and low tissue factor mice

    Get PDF
    Wound healing involves a number of physiologic mechanisms including coagulation, inflammation, formation of granulation tissue, and tissue remodeling. Coagulation with robust thrombin generation leading to fibrin formation is necessary for wound healing. It is less clear if there is a requirement for ongoing coagulation to support tissue remodeling. We have studied wound healing in mice with defects in both the initiation (low tissue factor) and propagation (hemophilia B) phases. In hemophilia B mice, dermal wound healing is delayed; this delay is associated with bleeding into the granulation tissue. Mice can be treated with replacement therapy (factor IX) or bypassing agents (factor VIIa) to restore thrombin generation. If treated just prior to wound placement, mice will have normal hemostasis in the first day of wound healing. As the therapeutic agents clear, the mice will revert to hemophilic state. If the primary role of coagulation in wound healing is to provide a stable platelet/fibrin plug that is loaded with thrombin, then treating hemophilic animals just prior to wound placement should restore normal wound healing. The results from this study did not support that hypothesis. Instead the results show that restoring thrombin generation only at the time of wound placement did not improve the delayed wound healing. In preliminary studies on low tissue factor mice, there also appears to be a delay in wound healing with evidence of bleeding into the granulation tissue. The current data suggests that ongoing coagulation function needs to be maintained to support a normal wound healing process

    Trauma-induced coagulopathy

    Get PDF
    Acknowledgements E.E.M. and A.S. appreciate the generous support from the National Institutes of Health for their inflammation and coagulation research over the past 35 years (NIGMS: 1-6 P50 GM49222, 1-6 T32 GM08315, 1-2 U54 GM 62119, RM1 GM 131968 and NHLBI: UM1 HL120877). H.B.M. acknowledges the generous support from the National Institutes of Health (NHBLI: K99HL1518870) L.Z.K. acknowledges the generous support from the National Institutes of Health for her platelet biology research (NIGMS: K23GM130892-01). M.D.N. acknowledges the generous support by the National Institutes of Health (NIGMS: R35 GM119526 and NHLBI R01 HL141080).Peer reviewedPostprin

    Heparin cofactor II in atherosclerotic lesions from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study

    Get PDF
    Heparin cofactor II (HCII) is a serine protease inhibitor (serpin) that has been shown to be a predictor of decreased atherosclerosis in the elderly and protective against atherosclerosis in mice. HCII inhibits thrombin in vitro and HCII-thrombin complexes have been detected in human plasma. Moreover, the mechanism of protection against atherosclerosis in mice was determined to be the inhibition of thrombin. Despite this evidence, the presence of HCII in human atherosclerotic tissue has not been reported. In this study, using samples of coronary arteries obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, we explore the local relationship between HCII and (pro)thrombin in atherosclerosis. We found that HCII and (pro)thrombin are co-localized in the lipid-rich necrotic core of atheromas. A significant positive correlation between each protein and the severity of the atherosclerotic lesion was present. These results suggest that HCII is in a position to inhibit thrombin in atherosclerotic lesions where thrombin can exert a proatherogenic inflammatory response. However, these results should be tempered by the additional findings from this, and other studies, that indicate the presence of other plasma proteins (antithrombin, albumin, and α1-protease inhibitor) in the same localized region of the atheroma

    Cutaneous wound healing is impaired in hemophilia B

    No full text
    We used a mouse model to test the hypothesis that the time course and histology of wound healing is altered in hemophilia B. Punch biopsies (3 mm) were placed in the skin of normal mice and mice with hemophilia. The size of the wounds was measured daily until the epidermal defect closed. All wounds closed in mice with hemophilia by 12 days, compared with 10 days in normal animals. Skin from the area of the wound was harvested at different time points and examined histologically. Hemophilic animals developed subcutaneous hematomas; normal animals did not. Macrophage infiltration was significantly delayed in hemophilia B. Unexpectedly, hemophilic mice developed twice as many blood vessels in the healing wounds as controls, and the increased vascularity persisted for at least 2 weeks. The deposition and persistence of ferric iron was also greater in hemophilic mice. We hypothesize that iron plays a role in promoting excess angiogenesis after wounding as it had been proposed to do in hemophilic arthropathy. We have demonstrated that impaired coagulation leads to delayed wound healing with abnormal histology. Our findings have significant implications for treatment of patients with hemophilia, and also highlight the importance of rapidly establishing hemostasis following trauma or surgery
    corecore