26 research outputs found

    Simulation model of a twin-tail, high performance airplane

    Get PDF
    The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust

    A low speed wind tunnel investigation of Reynolds number effects on a 60-deg swept wing configuration with leading and trailing edge flaps

    Get PDF
    A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation

    Sensitivity Analysis of Detect and Avoid Well Clear Parameter Variations on UAS DAA Sensor Requirements

    Get PDF
    In support of NASAs Unmanned Aircraft Systems Integration in the National Airspace System project and RTCA Special Committee 228, an analysis has been performed to provide insight in to the trade space between detect and avoid (DAA) Well Clear definition threshold variations, which could affect DAA sensor range and alerting requirements

    Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    Get PDF
    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will support UAS maneuver performance requirements development for integrating UAS in the NAS. The methods described are being used to help RTCA Special Committee 228 develop requirements

    Evaluation of the Trade Space Between UAS Maneuver Performance and SAA System Performance Requirements

    Get PDF
    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, nearterm UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements for a wide range of encounters. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. The simulator is described herein and has both a graphical user interface and batch interface to support detailed analysis of individual UAS encounters and macro analysis of a very large set of UAS and encounter models, respectively. Results from the simulator using approximate performance data from a well-known manned aircraft is presented to provide insight into the problem and as verification and validation of the simulator. Analysis of climb, descent, and level turn maneuvers to avoid a collision is presented. Noting the diversity of backgrounds in the UAS community, a description of the UAS aerodynamic and propulsive design and performance parameters is included. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are specific to airplane, flight condition, and encounter, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for each maneuver as well. Results for the vertical maneuver indicate that a minimum specific excess power value can assure a minimum CPA for a given time-to-go prediction. However, smaller values of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. Level turn results are less impacted by specific excess power and are presented as a function of turn rate. The effect of altitude is also discussed for the turns. Next steps and future work are discussed. Future studies will lead to better quantification of the preliminary results and cover the remainder of the proposed test matrix. It is anticipated that this will be done in conjunction with RTCA SC-228 over the next few months

    Analysis of Influence of UAS Speed Range and Turn Performance on Detect and Avoid Sensor Requirements

    Get PDF
    In support of NASAs Unmanned Aircraft Systems Integration in the National Airspace System project and RTCA Special Committee 228, an analysis has been performed to provide insight in to the trade space between unmanned aircraft speed and turn capability and detect and avoid sensor range requirements. The work was done as an initial part of the effort to understand low size, weight, and power sensor requirements for aircraft that have a limited speed envelope or can limit the envelope for portions of their mission and may be able to turn at higher than standard rate. Range and timeline reductions coming from limiting speed range and from increasing available turn rate in some speed ranges are shown

    Generic Airplane Model Concept and Four Specific Models Developed for Use in Piloted Simulation Studies

    Get PDF
    A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested

    Concepts of Integration for UAS Operations in the NAS

    Get PDF
    One of the major challenges facing the integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is the lack of an onboard pilot that can comply with the legal requirement identified in the US Code of Federal Regulations (CFR) that pilots see and avoid other aircraft. UAS will be expected to demonstrate the means to perform the function of see and avoid while preserving the safety level of the airspace and the efficiency of the air traffic system. This paper introduces a Sense and Avoid (SAA) concept for integration of UAS into the NAS that is currently being developed by the National Aeronautics and Space Administration (NASA) and identifies areas that require additional experimental evaluation to further inform various elements of the concept. The concept design rests on interoperability principles that take into account both the Air Traffic Control (ATC) environment as well as existing systems such as the Traffic Alert and Collision Avoidance System (TCAS). Specifically, the concept addresses the determination of well clear values that are large enough to avoid issuance of TCAS corrective Resolution Advisories, undue concern by pilots of proximate aircraft and issuance of controller traffic alerts. The concept also addresses appropriate declaration times for projected losses of well clear conditions and maneuvers to regain well clear separation

    Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    Get PDF
    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments

    Evidence for Increased Beta-Adrenoreceptor Responsiveness Induced by 14 Days of Simulated Microgravity in Humans

    Get PDF
    We studied hemodynamic responses to alpha and beta receptor agonists in 8 healthy men ( 38+- 2 yrs) before and after 14 days of 6 degree head-down tilt (HDT) to test the hypothesis that increased adrenergic responsiveness is induced by prolonged exposure to microgravity. Immediately following a 30-min baseline period, a steady-state infusion of isoproterenol (ISO) was used to assess beta 1- and beta 2-adrenergic responsiveness. ISO was infused at three graded constant rates of 0.005, 0.01 and 0.02 ug/kg/min. After heart rate and blood pressure had been allowed to return to baseline levels following ISO infusion graded infusion of phenylephrine (PE) was used to assess responsiveness of alpha I-vascular receptors. PE was infused at three graded constant rates of 0.25, 0.50 and 1.00 ug/kg/min. Each infusion interval for both drugs was 9 min. During the infusions, constant monitoring of beat-to-beat blood pressure and heart rate was performed and leg blood flow was measured with occlusion plethysmography at each infusion level. The slopes calculated from linear regressions between ISO and PE doses and changes in heart rate, blood pressure, and leg vascular resistance for each subject were used to represent alpha- and beta- adrenoreceptor responsiveness. Fourteen days HDT increased the slopes of heart rate (1056 +- 107 to 1553 +- 83 beats/ug/kg/min; P= 0.014) and vasodilation (-469ft +- 111 to -l446 +- 309 PRU/ug/kg/min; P =0.0224) to ISO infusion. There was no alteration in blood pressure or vascular resistance responses to PE infusion after HDT. Our results provide evidence that microgravity causes selective increases in beta 1- and beta 2-adrenergic responsiveness without affecting alpha 1-vascular responses
    corecore