52 research outputs found

    Hemodynamic studies of the legs under weightlessness

    Get PDF
    Following exposure to weightlessness, alterations in the return of blood from the legs play a crucial role in orthostatic tolerance and may be an important factor in work tolerance. To investigate some of the hemodynamic mechansism involved, an experiment was performed on the Skylab 3 and Skylab 4 missions to study arterial blood flow, venous compliance, and muscle pumping of blood. Skylab 4 results indicated that the most likely cause of increased blood flow was an increase in cardiac output secondary to increased central venous pressure caused by blood redistribution. Changes in venous compliance are thought to be primarily changes in somatic musculature which is postulated to primarily determine venous compliance of the legs. This was also thought to be demonstrated by the changes in muscle pumping. It is thought that these compliance changes, when taken with the decreased blood volume; provide a basis for the changes seen in orthostatic tolerance, work capacity and lower body negative pressure response

    Logic-controlled occlusive cuff system

    Get PDF
    An occlusive cuff system comprises a pressure cuff and a source of regulated compressed gas feeding the cuff through an electrically operated fill valve. An electrically operated vent valve vents the cuff to the ambient pressure. The fill valve is normally closed and the vent valve is normally open. In response to an external start signal, a logic network opens the fill valve and closes the vent valve, thereby starting the pressurization cycle and a timer. A pressure transducer continuously monitors the pressure in the cuff. When the transducer's output equals a selected reference voltage, a comparator causes the logic network to close the fill valve. The timer, after a selected time delay, opens the vent valve to the ambient pressure, thereby ending the pressurization cycle

    Automated analysis of blood pressure measurements (Korotkov sound)

    Get PDF
    Automatic system for noninvasive measurements of arterial blood pressure is described. System uses Korotkov sound processor logic ratios to identify Korotkov sounds. Schematic diagram of system is provided to show components and method of operation

    Anthropometric changes and fluid shifts

    Get PDF
    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad

    Apparatus and method for processing Korotkov sounds

    Get PDF
    A Korotkov sound processor, used in a noninvasive automatic blood measuring system where the brachial artery is occluded by an inflatable cuff, is disclosed. The Korotkoff sound associated with the systolic event is determined when the ratio of the absolute value of a voltage signal, representing Korotkov sounds in the range of 18 to 26 Hz to a maximum absolute peak value of the unfiltered signals, first equals or exceeds a value of 0.45. Korotkov sound associated with the diastolic event is determined when a ratio of the voltage signal of the Korotkov sounds in the range of 40 to 60 Hz to the absolute peak value of such signals within a single measurement cycle first falls below a value of 0.17. The processor signals the occurrence of the systolic and diastolic events and these signals can be used to control a recorder to record pressure values for these events

    Spectral analysis of skeletal muscle changes resulting from 59 days of weightlessness in Skylab 2

    Get PDF
    During stressful exercise of the m. gastrocnemius, preflight and postflight surface electromyograms (EMG) were taken from each of the Skylab II astronauts. Measurements on the muscle were made once 5 days before launch, and four times postflight on recovery day, 4 days after recovery, 16 days after recovery and 29 days after recovery. It was hypothesized that the disused gastrocnemius would exhibit dysfunction characteristics similar to those found in laboratory studies on disuse and of pathologically astrophied muscle, and that physical stress would be associated with heightened fatigability in the muscle. Both hypotheses were sustained. The results showed significant shifts of the predominant frequency of the gastrocnemius into higher than normal bands which suggests a relationship between muscle disuse characteristics and pathologic dysfunction characteristics. It was concluded that the spectrally analyzed EMG is a sensitive measure of muscle dsyfunction that is associated with disuse. Antigravity muscles exhibit heightened susceptibility to fatigue when subjected to lengthy weightlessness

    Skylab medical data evaluation program (SMEDEP)

    Get PDF
    A day-by-day summary of selected data collected during the experiment is presented. The clinical and environmental data are presented in a mission-day format along with a tabulation of biomedical measurements whose values exceed three standard deviations from the preflight measurements

    Determination of cardiac size from chest roentgenograms following Skylab missions

    Get PDF
    Decreased cardiothoracic transverse diameter ratios following Mercury, Gemini and Apollo space flights have been reported previously. To evaluate further changes in cardiac size, standard posteroanterior chest films in systole and diastole were obtained before flight and within a few hours after recovery on each of the Skylab astronauts. Postflight chest X-rays were visually compared to the preflight roentgenograms for possible changes in pulmonary vasculature, lung parenchyma, bony or soft tissue structures. From these roentgenograms the following measurements were obtained: cardiac and thoracic transverse diameters, cardiothoracic transverse diameter ratio, cardiac area from the product of both diagonal diameters, cardiac silhouette area by planimetry, thoracic cage area and cardiothoracic area ratio. The postflight frontal cardiac silhouette sizes were significantly decreased when compared with the respective preflight values (P0.05 or 0.01). The observed changes are thought to be related to postflight decrease in the intracardiac chamber volume

    Responses of women to orthostatic and exercise stresses

    Get PDF
    The results are presented from a special physiological study of women at the Johnson Space Center in 1976 to 1977. Its purpose was to establish a large (98 subjects) database from normal working women. The data sets are medical historical, clinical, anthropometric, and stress response statistics useful for establishing medical criteria for selecting women astronauts. Stressors were lower body negative pressure and static standing (both orthostatic) and treadmill exercise (ergometric). Data shown are original individual values with analyses and subsets, and statistical summaries and correlations relating to human responses to microgravity. Similarities appear between the characteristics of women in this study and those of women astronauts currently flying in Shuttle crews

    Evidence for Increased Beta-Adrenoreceptor Responsiveness Induced by 14 Days of Simulated Microgravity in Humans

    Get PDF
    We studied hemodynamic responses to alpha and beta receptor agonists in 8 healthy men ( 38+- 2 yrs) before and after 14 days of 6 degree head-down tilt (HDT) to test the hypothesis that increased adrenergic responsiveness is induced by prolonged exposure to microgravity. Immediately following a 30-min baseline period, a steady-state infusion of isoproterenol (ISO) was used to assess beta 1- and beta 2-adrenergic responsiveness. ISO was infused at three graded constant rates of 0.005, 0.01 and 0.02 ug/kg/min. After heart rate and blood pressure had been allowed to return to baseline levels following ISO infusion graded infusion of phenylephrine (PE) was used to assess responsiveness of alpha I-vascular receptors. PE was infused at three graded constant rates of 0.25, 0.50 and 1.00 ug/kg/min. Each infusion interval for both drugs was 9 min. During the infusions, constant monitoring of beat-to-beat blood pressure and heart rate was performed and leg blood flow was measured with occlusion plethysmography at each infusion level. The slopes calculated from linear regressions between ISO and PE doses and changes in heart rate, blood pressure, and leg vascular resistance for each subject were used to represent alpha- and beta- adrenoreceptor responsiveness. Fourteen days HDT increased the slopes of heart rate (1056 +- 107 to 1553 +- 83 beats/ug/kg/min; P= 0.014) and vasodilation (-469ft +- 111 to -l446 +- 309 PRU/ug/kg/min; P =0.0224) to ISO infusion. There was no alteration in blood pressure or vascular resistance responses to PE infusion after HDT. Our results provide evidence that microgravity causes selective increases in beta 1- and beta 2-adrenergic responsiveness without affecting alpha 1-vascular responses
    • …
    corecore