5,017 research outputs found

    Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems

    Full text link
    By combining band gap engineering with the self-organized growth of quantum dots, we present a scheme of adjusting the mid-infrared absorption properties to desired energy transitions in quantum dot based photodetectors. Embedding the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us to tune the optical transition energy by changing the superlattice period as well as by changing the growth conditions of the dots. Using a one band envelope function framework we are able, in a fully three dimensional calculation, to predict the photocurrent spectra of these devices as well as their polarization properties. The calculations further predict a strong impact of the dots on the superlattices minibands. The impact of vertical dot alignment or misalignment on the absorption properties of this dot/superlattice structure is investigated. The observed photocurrent spectra of vertically coupled quantum dot stacks show very good agreement with the calculations.In these experiments, vertically coupled quantum dot stacks show the best performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR

    Solving the Einstein-Podolsky-Rosen puzzle: the origin of non-locality in Aspect-type experiments

    Full text link
    So far no mechanism is known, which could connect the two measurements in an Aspect-type experiment. Here, we suggest such a mechanism, based on the phase of a photon's field during propagation. We show that two polarization measurements are correlated, even if no signal passes from one point of measurement to the other. The non-local connection of a photon pair is the result of its origin at a common source, where the two fields acquire a well defined phase difference. Therefore, it is not actually a non-local effect in any conventional sense. We expect that the model and the detailed analysis it allows will have a major impact on quantum cryptography and quantum computation.Comment: 5 pages 1 figure. Added an analysis of quantum steering. The result is that under certain conditions the experimental result at B can be predicted if the polarization angle and the result at A are known. The paper has been accepted for publication in Frontiers of Physics. arXiv admin note: substantial text overlap with arXiv:1108.435

    Isotope effects in underdoped cuprate superconductors: a quantum phenomenon

    Full text link
    We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in - plane penetration depth naturally follows from the doping driven 3D-2D crossover, the 2D quantum superconductor to insulator transition (QSI) in the underdoped limit and the change of the relative doping concentration upon isotope substitution. Close to the QSI transition both, the isotope coefficient of transition temperature and penetration depth approach the coefficient of the relative dopant concentration, and its divergence sets the scale. These predictions are fully consistent with the experimental data and imply that close to the underdoped limit the unusual isotope effect on transition temperature and penetration depth uncovers critical phenomena associated with the quantum superconductor to insulator transition in two dimensions.Comment: 6 pages, 3 figure

    Reichenbach's Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom

    Full text link
    In the paper it will be shown that Reichenbach's Weak Common Cause Principle is not valid in algebraic quantum field theory with locally finite degrees of freedom in general. Namely, for any pair of projections A and B supported in spacelike separated double cones O(a) and O(b), respectively, a correlating state can be given for which there is no nontrivial common cause (system) located in the union of the backward light cones of O(a) and O(b) and commuting with the both A and B. Since noncommuting common cause solutions are presented in these states the abandonment of commutativity can modulate this result: noncommutative Common Cause Principles might survive in these models

    Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation

    Get PDF
    In this article we present the complete resummation of the leading chirally-enhanced corrections stemming from gluino-squark, chargino-sfermion and neutralino-sfermion loops in the MSSM with non-minimal sources of flavor-violation. We compute the finite renormalization of fermion masses and the CKM matrix induced by chirality-flipping self-energies. In the decoupling limit Msusy>>v, which is an excellent approximation to the full theory, we give analytic results for the effective gaugino(higgsino)-fermion-sfermion and the Higgs-fermion-fermion vertices. Using these vertices as effective Feynman rules, all leading chirally-enhanced corrections can consistently be included into perturbative calculations of Feynman amplitudes. We also give a generalized parametrization for the bare CKM matrix which extends the classic Wolfenstein parametrization to the case of complex parameters lambda and A.Comment: 31 pages, 3 figures; typos correcte

    A photogrammetric method for target monitoring inside the MEG II detector

    Get PDF
    An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to avoid biases and systematic errors in measuring the trajectories of the outcoming particles. A CMOS-based, high resolution, high radiation tolerant, and high magnetic field resistant photo-camera was mounted inside the MEG II detector at the Paul Scherrer Institute (Switzerland). MEG II is used to search for lepton flavor violation in muon decays. The photogrammetric method’s challenges, affecting measurements of low momentum particles’ tracks, are the high magnetic field of the spectrometer, high radiation levels, tight space constraints, and the need to limit the material budget in the tracking volume. The camera is focused on the dot pattern drawn on the thin MEG II target, about 1 m away from the detector endcaps where the photo-camera is placed. Target movements and deformations are monitored by comparing images of the dots taken at various times during the measurement. The images are acquired with a Raspberry board and analyzed using custom software. Global alignment to the spectrometer is guaranteed by corner cubes placed on the target support. As a result, the target monitoring fulfills the needs of the experiment

    Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots

    Get PDF
    Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources

    A photogrammetric method for target monitoring inside the MEG II detector

    Get PDF
    An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to avoid biases and systematic errors in measuring the trajectories of the outcoming particles. A CMOS-based, high resolution, high radiation tolerant, and high magnetic field resistant photo-camera was mounted inside the MEG II detector at the Paul Scherrer Institute (Switzerland). MEG II is used to search for lepton flavor violation in muon decays. The photogrammetric method's challenges, affecting measurements of low momentum particles' tracks, are the high magnetic field of the spectrometer, high radiation levels, tight space constraints, and the need to limit the material budget in the tracking volume. The camera is focused on the dot pattern drawn on the thin MEG II target, about 1 m away from the detector endcaps where the photo-camera is placed. Target movements and deformations are monitored by comparing images of the dots taken at various times during the measurement. The images are acquired with a Raspberry board and analyzed using custom software. Global alignment to the spectrometer is guaranteed by corner cubes placed on the target support. As a result, the target monitoring fulfills the needs of the experiment

    Kick stability in groups and dynamical systems

    Full text link
    We consider a general construction of ``kicked systems''. Let G be a group of measure preserving transformations of a probability space. Given its one-parameter/cyclic subgroup (the flow), and any sequence of elements (the kicks) we define the kicked dynamics on the space by alternately flowing with given period, then applying a kick. Our main finding is the following stability phenomenon: the kicked system often inherits recurrence properties of the original flow. We present three main examples. 1) G is the torus. We show that for generic linear flows, and any sequence of kicks, the trajectories of the kicked system are uniformly distributed for almost all periods. 2) G is a discrete subgroup of PSL(2,R) acting on the unit tangent bundle of a Riemann surface. The flow is generated by a single element of G, and we take any bounded sequence of elements of G as our kicks. We prove that the kicked system is mixing for all sufficiently large periods if and only if the generator is of infinite order and is not conjugate to its inverse in G. 3) G is the group of Hamiltonian diffeomorphisms of a closed symplectic manifold. We assume that the flow is rapidly growing in the sense of Hofer's norm, and the kicks are bounded. We prove that for a positive proportion of the periods the kicked system inherits a kind of energy conservation law and is thus superrecurrent. We use tools of geometric group theory and symplectic topology.Comment: Latex, 40 pages, revised versio
    • …
    corecore