5,017 research outputs found
Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems
By combining band gap engineering with the self-organized growth of quantum
dots, we present a scheme of adjusting the mid-infrared absorption properties
to desired energy transitions in quantum dot based photodetectors. Embedding
the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us
to tune the optical transition energy by changing the superlattice period as
well as by changing the growth conditions of the dots. Using a one band
envelope function framework we are able, in a fully three dimensional
calculation, to predict the photocurrent spectra of these devices as well as
their polarization properties. The calculations further predict a strong impact
of the dots on the superlattices minibands. The impact of vertical dot
alignment or misalignment on the absorption properties of this dot/superlattice
structure is investigated. The observed photocurrent spectra of vertically
coupled quantum dot stacks show very good agreement with the calculations.In
these experiments, vertically coupled quantum dot stacks show the best
performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR
Solving the Einstein-Podolsky-Rosen puzzle: the origin of non-locality in Aspect-type experiments
So far no mechanism is known, which could connect the two measurements in an
Aspect-type experiment. Here, we suggest such a mechanism, based on the phase
of a photon's field during propagation. We show that two polarization
measurements are correlated, even if no signal passes from one point of
measurement to the other. The non-local connection of a photon pair is the
result of its origin at a common source, where the two fields acquire a well
defined phase difference. Therefore, it is not actually a non-local effect in
any conventional sense. We expect that the model and the detailed analysis it
allows will have a major impact on quantum cryptography and quantum
computation.Comment: 5 pages 1 figure. Added an analysis of quantum steering. The result
is that under certain conditions the experimental result at B can be
predicted if the polarization angle and the result at A are known. The paper
has been accepted for publication in Frontiers of Physics. arXiv admin note:
substantial text overlap with arXiv:1108.435
Isotope effects in underdoped cuprate superconductors: a quantum phenomenon
We show that the unusual doping dependence of the isotope effects on
transition temperature and zero temperature in - plane penetration depth
naturally follows from the doping driven 3D-2D crossover, the 2D quantum
superconductor to insulator transition (QSI) in the underdoped limit and the
change of the relative doping concentration upon isotope substitution. Close to
the QSI transition both, the isotope coefficient of transition temperature and
penetration depth approach the coefficient of the relative dopant
concentration, and its divergence sets the scale. These predictions are fully
consistent with the experimental data and imply that close to the underdoped
limit the unusual isotope effect on transition temperature and penetration
depth uncovers critical phenomena associated with the quantum superconductor to
insulator transition in two dimensions.Comment: 6 pages, 3 figure
Reichenbach's Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom
In the paper it will be shown that Reichenbach's Weak Common Cause Principle
is not valid in algebraic quantum field theory with locally finite degrees of
freedom in general. Namely, for any pair of projections A and B supported in
spacelike separated double cones O(a) and O(b), respectively, a correlating
state can be given for which there is no nontrivial common cause (system)
located in the union of the backward light cones of O(a) and O(b) and commuting
with the both A and B. Since noncommuting common cause solutions are presented
in these states the abandonment of commutativity can modulate this result:
noncommutative Common Cause Principles might survive in these models
Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation
In this article we present the complete resummation of the leading
chirally-enhanced corrections stemming from gluino-squark, chargino-sfermion
and neutralino-sfermion loops in the MSSM with non-minimal sources of
flavor-violation. We compute the finite renormalization of fermion masses and
the CKM matrix induced by chirality-flipping self-energies. In the decoupling
limit Msusy>>v, which is an excellent approximation to the full theory, we give
analytic results for the effective gaugino(higgsino)-fermion-sfermion and the
Higgs-fermion-fermion vertices. Using these vertices as effective Feynman
rules, all leading chirally-enhanced corrections can consistently be included
into perturbative calculations of Feynman amplitudes. We also give a
generalized parametrization for the bare CKM matrix which extends the classic
Wolfenstein parametrization to the case of complex parameters lambda and A.Comment: 31 pages, 3 figures; typos correcte
A photogrammetric method for target monitoring inside the MEG II detector
An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to avoid biases and systematic errors in measuring the trajectories of the outcoming particles. A CMOS-based, high resolution, high radiation tolerant, and high magnetic field resistant photo-camera was mounted inside the MEG II detector at the Paul Scherrer Institute (Switzerland). MEG II is used to search for lepton flavor violation in muon decays. The photogrammetric method’s challenges, affecting measurements of low momentum particles’ tracks, are the high magnetic field of the spectrometer, high radiation levels, tight space constraints, and the need to limit the material budget in the tracking volume. The camera is focused on the dot pattern drawn on the thin MEG II target, about 1 m away from the detector endcaps where the photo-camera is placed. Target movements and deformations are monitored by comparing images of the dots taken at various times during the measurement. The images are acquired with a Raspberry board and analyzed using custom software. Global alignment to the spectrometer is guaranteed by corner cubes placed on the target support. As a result, the target monitoring fulfills the needs of the experiment
Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots
Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources
A photogrammetric method for target monitoring inside the MEG II detector
An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to avoid biases and systematic errors in measuring the trajectories of the outcoming particles. A CMOS-based, high resolution, high radiation tolerant, and high magnetic field resistant photo-camera was mounted inside the MEG II detector at the Paul Scherrer Institute (Switzerland). MEG II is used to search for lepton flavor violation in muon decays. The photogrammetric method's challenges, affecting measurements of low momentum particles' tracks, are the high magnetic field of the spectrometer, high radiation levels, tight space constraints, and the need to limit the material budget in the tracking volume. The camera is focused on the dot pattern drawn on the thin MEG II target, about 1 m away from the detector endcaps where the photo-camera is placed. Target movements and deformations are monitored by comparing images of the dots taken at various times during the measurement. The images are acquired with a Raspberry board and analyzed using custom software. Global alignment to the spectrometer is guaranteed by corner cubes placed on the target support. As a result, the target monitoring fulfills the needs of the experiment
Kick stability in groups and dynamical systems
We consider a general construction of ``kicked systems''. Let G be a group of
measure preserving transformations of a probability space. Given its
one-parameter/cyclic subgroup (the flow), and any sequence of elements (the
kicks) we define the kicked dynamics on the space by alternately flowing with
given period, then applying a kick. Our main finding is the following stability
phenomenon: the kicked system often inherits recurrence properties of the
original flow. We present three main examples. 1) G is the torus. We show that
for generic linear flows, and any sequence of kicks, the trajectories of the
kicked system are uniformly distributed for almost all periods. 2) G is a
discrete subgroup of PSL(2,R) acting on the unit tangent bundle of a Riemann
surface. The flow is generated by a single element of G, and we take any
bounded sequence of elements of G as our kicks. We prove that the kicked system
is mixing for all sufficiently large periods if and only if the generator is of
infinite order and is not conjugate to its inverse in G. 3) G is the group of
Hamiltonian diffeomorphisms of a closed symplectic manifold. We assume that the
flow is rapidly growing in the sense of Hofer's norm, and the kicks are
bounded. We prove that for a positive proportion of the periods the kicked
system inherits a kind of energy conservation law and is thus superrecurrent.
We use tools of geometric group theory and symplectic topology.Comment: Latex, 40 pages, revised versio
- …