3 research outputs found

    Electron-cyclotron-resonance heating in Wendelstein 7-X: A versatile heating and current-drive method and a tool for in-depth physics studies

    No full text
    For stellarators, which need no or only small amounts of current drive, electron-cyclotron-resonance heating (ECRH) is a promising heating method even for the envisaged application in a fusion power plant. Wendelstein 7-X (W7-X) is equipped with a steady-state capable ECRH system, operating at 140 GHz, which corresponds to the 2nd cyclotron harmonic of the electrons at a magnetic field of 2.5 T. Ten gyrotrons are operational and already delivered 7 MW to W7-X plasmas. Combined with pellet injection, the highest triple product (0.68 ×1020 keV m-3 s), observed up to now in stellarators, was achieved (Sunn Pedersen et al 2018 Plasma Phys. Control. Fusion 61 014035). For the first time, W7-X plasmas were sustained by 2nd harmonic O-mode heating, approaching the collisionality regime for which W7-X was optimized. Power deposition scans did not show any indication of electron temperature profile resilience. In low-density, low-power plasmas a compensation of the bootstrap current with electron-cyclotron current drive (ECCD) was demonstrated. Sufficiently strong ECCD close to the plasma centre produced periodic internal plasma-crash events, which coincide with the appearance of low order rationals of the rotational transform

    Performance of Wendelstein 7-X stellarator plasmas during the first divertor operation phase

    No full text
    Wendelstein 7-X is the first comprehensively optimized stellarator aiming at good confinement with plasma parameters relevant to a future stellarator power plant. Plasma operation started in 2015 using a limiter configuration. After installing an uncooled magnetic island divertor, extending the energy limit from 4 to 80 MJ, operation continued in 2017. For this phase, the electron cyclotron resonance heating (ECRH) capability was extended to 7 MW, and hydrogen pellet injection was implemented. The enhancements resulted in the highest triple product (6.5 × 1019 keV m-3 s) achieved in a stellarator until now. Plasma conditions [Te(0) ≈ Ti(0) ≈ 3.8 keV, τE > 200 ms] already were in the stellarator reactor-relevant ion-root plasma transport regime. Stable operation above the 2nd harmonic ECRH X-mode cutoff was demonstrated, which is instrumental for achieving high plasma densities in Wendelstein 7-X. Further important developments include the confirmation of low intrinsic error fields, the observation of current-drive induced instabilities, and first fast ion heating and confinement experiments. The efficacy of the magnetic island divertor was instrumental in achieving high performance in Wendelstein 7-X. Symmetrization of the heat loads between the ten divertor modules could be achieved by external resonant magnetic fields. Full divertor power detachment facilitated the extension of high power plasmas significantly beyond the energy limit of 80 MJ
    corecore