1,160 research outputs found

    Survival of dominated strategies under evolutionary dynamics

    Get PDF
    We show that any evolutionary dynamic that satisfies three mild requirements— continuity, positive correlation, and innovation—does not eliminate strictly dominated strategies in all games. Likewise, we demonstrate that existing elimination results for evolutionary dynamics are not robust to small changes in the specifications of the dynamics

    Dynamics of Multidimensional Secession

    Full text link
    We explore a generalized Seceder Model with variable size selection groups and higher dimensional genotypes, uncovering its well-defined mean-field limiting behavior. Mapping to a discrete, deterministic version, we pin down the upper critical size of the multiplet selection group, characterize all relevant dynamically stable fixed points, and provide a complete analytical description of its self-similar hierarchy of multiple branch solutions.Comment: 4 pages, 4 figures, PR

    Evolutionary Selection against Dominated Strategies

    Full text link

    Evolutionary prisoner's dilemma game on hierarchical lattices

    Full text link
    An evolutionary prisoner's dilemma (PD) game is studied with players located on a hierarchical structure of layered square lattices. The players can follow two strategies [D (defector) and C (cooperator)] and their income comes from PD games with the ``neighbors.'' The adoption of one of the neighboring strategies is allowed with a probability dependent on the payoff difference. Monte Carlo simulations are performed to study how the measure of cooperation is affected by the number of hierarchical levels (Q) and by the temptation to defect. According to the simulations the highest frequency of cooperation can be observed at the top level if the number of hierarchical levels is low (Q<4). For larger Q, however, the highest frequency of cooperators occurs in the middle layers. The four-level hierarchical structure provides the highest average (total) income for the whole community.Comment: appendix adde

    Metastability and anomalous fixation in evolutionary games on scale-free networks

    Get PDF
    We study the influence of complex graphs on the metastability and fixation properties of a set of evolutionary processes. In the framework of evolutionary game theory, where the fitness and selection are frequency-dependent and vary with the population composition, we analyze the dynamics of snowdrift games (characterized by a metastable coexistence state) on scale-free networks. Using an effective diffusion theory in the weak selection limit, we demonstrate how the scale-free structure affects the system's metastable state and leads to anomalous fixation. In particular, we analytically and numerically show that the probability and mean time of fixation are characterized by stretched exponential behaviors with exponents depending on the network's degree distribution.Comment: 5 pages, 4 figures, to appear in Physical Review Letter

    PNP PIN bipolar phototransistors for high-speed applications built in a 180nm CMOS process

    Get PDF
    AbstractThis work reports on three speed optimized pnp bipolar phototransistors build in a standard 180nm CMOS process using a special starting wafer. The starting wafer consists of a low doped p epitaxial layer on top of the p substrate. This low doped p epitaxial layer leads to a thick space-charge region between base and collector and thus to a high −3dB bandwidth at low collector–emitter voltages. For a further increase of the bandwidth the presented phototransistors were designed with small emitter areas resulting in a small base-emitter capacitance. The three presented phototransistors were implemented in sizes of 40×40μm2 and 100×100μm2. Optical DC and AC measurements at 410nm, 675nm and 850nm were done for phototransistor characterization. Due to the speed optimized design and the layer structure of the phototransistors, bandwidths up to 76.9MHz and dynamic responsivities up to 2.89A/W were achieved. Furthermore simulations of the electric field strength and space-charge regions were done

    Aspiring to the fittest and promotion of cooperation in the prisoner's dilemma game

    Full text link
    Strategy changes are an essential part of evolutionary games. Here we introduce a simple rule that, depending on the value of a single parameter ww, influences the selection of players that are considered as potential sources of the new strategy. For positive ww players with high payoffs will be considered more likely, while for negative ww the opposite holds. Setting ww equal to zero returns the frequently adopted random selection of the opponent. We find that increasing the probability of adopting the strategy from the fittest player within reach, i.e. setting ww positive, promotes the evolution of cooperation. The robustness of this observation is tested against different levels of uncertainty in the strategy adoption process and for different interaction network. Since the evolution to widespread defection is tightly associated with cooperators having a lower fitness than defectors, the fact that positive values of ww facilitate cooperation is quite surprising. We show that the results can be explained by means of a negative feedback effect that increases the vulnerability of defectors although initially increasing their survivability. Moreover, we demonstrate that the introduction of ww effectively alters the interaction network and thus also the impact of uncertainty by strategy adoptions on the evolution of cooperation.Comment: 7 two-column pages, 5 figures; accepted for publication in Physical Review

    On Phase Transitions to Cooperation in the Prisoner's Dilemma

    Full text link
    Game theory formalizes certain interactions between physical particles or between living beings in biology, sociology, and economics, and quantifies the outcomes by payoffs. The prisoner's dilemma (PD) describes situations in which it is profitable if everybody cooperates rather than defects (free-rides or cheats), but as cooperation is risky and defection is tempting, the expected outcome is defection. Nevertheless, some biological and social mechanisms can support cooperation by effectively transforming the payoffs. Here, we study the related phase transitions, which can be of first order (discontinous) or of second order (continuous), implying a variety of different routes to cooperation. After classifying the transitions into cases of equilibrium displacement, equilibrium selection, and equilibrium creation, we show that a transition to cooperation may take place even if the stationary states and the eigenvalues of the replicator equation for the PD stay unchanged. Our example is based on adaptive group pressure, which makes the payoffs dependent on the endogeneous dynamics in the population. The resulting bistability can invert the expected outcome in favor of cooperation.Comment: For related work see http://www.soms.ethz.ch

    Restricted connections among distinguished players support cooperation

    Full text link
    We study the evolution of cooperation within the spatial prisoner's dilemma game on a square lattice where a fraction of players μ\mu can spread their strategy more easily than the rest due to a predetermined larger teaching capability. In addition, players characterized with the larger teaching capability are allowed to temporarily link with distant opponents of the same kind with probability pp, thus introducing shortcut connections among the distinguished. We show that these additional temporary connections are able to sustain cooperation throughout the whole range of the temptation to defect. Remarkably, we observe that as the temptation to defect increases the optimal μ\mu decreases, and moreover, only minute values of pp warrant the best promotion of cooperation. Our study thus indicates that influential individuals must be few and sparsely connected in order for cooperation to thrive in a defection prone environment.Comment: 6 two-column pages, 6 figures; accepted for publication in Physical Review
    corecore