1,705 research outputs found
Monotone methods for equilibrium selection under perfect foresight dynamics
This paper studies equilibrium selection in supermodular games
based on perfect foresight dynamics. A normal form game is played
repeatedly in a large society of rational agents. There are frictions:
opportunities to revise actions follow independent Poisson processes.
Each agent forms his belief about the future evolution of action distribution
in the society to take an action that maximizes his expected
discounted payo�. A perfect foresight path is de�ned to be a feasible
path of the action distribution along which every agent with a revision
opportunity takes a best response to this path itself. A Nash
equilibrium is said to be absorbing if there exists no perfect foresight
path escaping from a neighborhood of this equilibrium; a Nash equilibrium
is said to be globally accessible if for each initial distribution,
there exists a perfect foresight path converging to this equilibrium.
By exploiting the monotone structure of the dynamics, a unique Nash
equilibrium that is absorbing and globally accessible for any small degree
of friction is identi�ed for certain classes of supermodular games.
For games with monotone potentials, the selection of the monotone
potential maximizer is obtained. Complete characterizations of absorbing
equilibrium and globally accessible equilibrium are given for
binary supermodular games. An example demonstrates that unanimity
games may have multiple globally accessible equilibria for a small
friction
Recurrence spectrum in smooth dynamical systems
We prove that for conformal expanding maps the return time does have constant
multifractal spectrum. This is the counterpart of the result by Feng and Wu in
the symbolic setting
Periodicity of mass extinctions without an extraterrestrial cause
We study a lattice model of a multi-species prey-predator system. Numerical
results show that for a small mutation rate the model develops irregular
long-period oscillatory behavior with sizeable changes in a number of species.
The periodicity of extinctions on Earth was suggested by Raup and Sepkoski but
so far is lacking a satisfactory explanation. Our model indicates that this is
a natural consequence of the ecosystem dynamics, not the result of any
extraterrestrial cause.Comment: 4 pages, accepted in Phys.Rev.
Complementarity and diversity in a soluble model ecosystem
Complementarity among species with different traits is one of the basic
processes affecting biodiversity, defined as the number of species in the
ecosystem. We present here a soluble model ecosystem in which the species are
characterized by binary traits and their pairwise interactions follow a
complementarity principle. Manipulation of the species composition, and so the
study of its effects on the species diversity is achieved through the
introduction of a bias parameter favoring one of the traits. Using statistical
mechanics tools we find explicit expressions for the allowed values of the
equilibrium species concentrations in terms of the control parameters of the
model
Equilibrium states for potentials with \sup\phi - \inf\phi < \htop(f)
In the context of smooth interval maps, we study an inducing scheme approach
to prove existence and uniqueness of equilibrium states for potentials
with he `bounded range' condition \sup \phi - \inf \phi < \htop, first used
by Hofbauer and Keller. We compare our results to Hofbauer and Keller's use of
Perron-Frobenius operators. We demonstrate that this `bounded range' condition
on the potential is important even if the potential is H\"older continuous. We
also prove analyticity of the pressure in this context.Comment: Added Lemma 6 to deal with the disparity between leading eigenvalues
and operator norms. Added extra references and corrected some typo
Quasiperiodic perturbations of heteroclinic attractor networks
We consider heteroclinic attractor networks motivated by models of competition between neural populations during binocular rivalry. We show that gamma distributions of dominance times observed experimentally in binocular rivalry and other forms of bistable perception, commonly explained by means of noise in the models, can be achieved with quasiperiodic perturbations. For this purpose, we present a methodology based on the separatrix map to model the dynamics close to heteroclinic networks with quasiperiodic perturbations. Our methodology unifies two different approaches, one based on Melnikov integrals and the other one based on variational equations. We apply it to two models: first, to the Duffing equation, which comes from the perturbation of a Hamiltonian system and, second, to a heteroclinic attractor network for binocular rivalry, for which we develop a suitable method based on Melnikov integrals for non-Hamiltonian systems. In both models, the perturbed system shows chaotic behavior, while dominance times achieve good agreement with gamma distributions. Moreover, the separatrix map provides a new (discrete) model for bistable perception which, in addition, replaces the numerical integration of time-continuous models and, consequently, reduces the computational cost and avoids numerical instabilitiesPeer ReviewedPostprint (author's final draft
Robustness and epistasis in mutation-selection models
We investigate the fitness advantage associated with the robustness of a
phenotype against deleterious mutations using deterministic mutation-selection
models of quasispecies type equipped with a mesa shaped fitness landscape. We
obtain analytic results for the robustness effect which become exact in the
limit of infinite sequence length. Thereby, we are able to clarify a seeming
contradiction between recent rigorous work and an earlier heuristic treatment
based on a mapping to a Schr\"odinger equation. We exploit the quantum
mechanical analogy to calculate a correction term for finite sequence lengths
and verify our analytic results by numerical studies. In addition, we
investigate the occurrence of an error threshold for a general class of
epistatic landscape and show that diminishing epistasis is a necessary but not
sufficient condition for error threshold behavior.Comment: 20 pages, 14 figure
Networking Effects on Cooperation in Evolutionary Snowdrift Game
The effects of networking on the extent of cooperation emerging in a
competitive setting are studied. The evolutionary snowdrift game, which
represents a realistic alternative to the well-known Prisoner's Dilemma, is
studied in the Watts-Strogatz network that spans the regular, small-world, and
random networks through random re-wiring. Over a wide range of payoffs, a
re-wired network is found to suppress cooperation when compared with a
well-mixed or fully connected system. Two extinction payoffs, that characterize
the emergence of a homogeneous steady state, are identified. It is found that,
unlike in the Prisoner's Dilemma, the standard deviation of the degree
distribution is the dominant network property that governs the extinction
payoffs.Comment: Changed conten
Noise and Correlations in a Spatial Population Model with Cyclic Competition
Noise and spatial degrees of freedom characterize most ecosystems. Some
aspects of their influence on the coevolution of populations with cyclic
interspecies competition have been demonstrated in recent experiments [e.g. B.
Kerr et al., Nature {\bf 418}, 171 (2002)]. To reach a better theoretical
understanding of these phenomena, we consider a paradigmatic spatial model
where three species exhibit cyclic dominance. Using an individual-based
description, as well as stochastic partial differential and deterministic
reaction-diffusion equations, we account for stochastic fluctuations and
spatial diffusion at different levels, and show how fascinating patterns of
entangled spirals emerge. We rationalize our analysis by computing the
spatio-temporal correlation functions and provide analytical expressions for
the front velocity and the wavelength of the propagating spiral waves.Comment: 4 pages of main text, 3 color figures + 2 pages of supplementary
material (EPAPS Document). Final version for Physical Review Letter
- …