1,705 research outputs found

    Monotone methods for equilibrium selection under perfect foresight dynamics

    Get PDF
    This paper studies equilibrium selection in supermodular games based on perfect foresight dynamics. A normal form game is played repeatedly in a large society of rational agents. There are frictions: opportunities to revise actions follow independent Poisson processes. Each agent forms his belief about the future evolution of action distribution in the society to take an action that maximizes his expected discounted payo�. A perfect foresight path is de�ned to be a feasible path of the action distribution along which every agent with a revision opportunity takes a best response to this path itself. A Nash equilibrium is said to be absorbing if there exists no perfect foresight path escaping from a neighborhood of this equilibrium; a Nash equilibrium is said to be globally accessible if for each initial distribution, there exists a perfect foresight path converging to this equilibrium. By exploiting the monotone structure of the dynamics, a unique Nash equilibrium that is absorbing and globally accessible for any small degree of friction is identi�ed for certain classes of supermodular games. For games with monotone potentials, the selection of the monotone potential maximizer is obtained. Complete characterizations of absorbing equilibrium and globally accessible equilibrium are given for binary supermodular games. An example demonstrates that unanimity games may have multiple globally accessible equilibria for a small friction

    Recurrence spectrum in smooth dynamical systems

    Full text link
    We prove that for conformal expanding maps the return time does have constant multifractal spectrum. This is the counterpart of the result by Feng and Wu in the symbolic setting

    Periodicity of mass extinctions without an extraterrestrial cause

    Full text link
    We study a lattice model of a multi-species prey-predator system. Numerical results show that for a small mutation rate the model develops irregular long-period oscillatory behavior with sizeable changes in a number of species. The periodicity of extinctions on Earth was suggested by Raup and Sepkoski but so far is lacking a satisfactory explanation. Our model indicates that this is a natural consequence of the ecosystem dynamics, not the result of any extraterrestrial cause.Comment: 4 pages, accepted in Phys.Rev.

    Complementarity and diversity in a soluble model ecosystem

    Full text link
    Complementarity among species with different traits is one of the basic processes affecting biodiversity, defined as the number of species in the ecosystem. We present here a soluble model ecosystem in which the species are characterized by binary traits and their pairwise interactions follow a complementarity principle. Manipulation of the species composition, and so the study of its effects on the species diversity is achieved through the introduction of a bias parameter favoring one of the traits. Using statistical mechanics tools we find explicit expressions for the allowed values of the equilibrium species concentrations in terms of the control parameters of the model

    Equilibrium states for potentials with \sup\phi - \inf\phi < \htop(f)

    Full text link
    In the context of smooth interval maps, we study an inducing scheme approach to prove existence and uniqueness of equilibrium states for potentials Ï•\phi with he `bounded range' condition \sup \phi - \inf \phi < \htop, first used by Hofbauer and Keller. We compare our results to Hofbauer and Keller's use of Perron-Frobenius operators. We demonstrate that this `bounded range' condition on the potential is important even if the potential is H\"older continuous. We also prove analyticity of the pressure in this context.Comment: Added Lemma 6 to deal with the disparity between leading eigenvalues and operator norms. Added extra references and corrected some typo

    Quasiperiodic perturbations of heteroclinic attractor networks

    Get PDF
    We consider heteroclinic attractor networks motivated by models of competition between neural populations during binocular rivalry. We show that gamma distributions of dominance times observed experimentally in binocular rivalry and other forms of bistable perception, commonly explained by means of noise in the models, can be achieved with quasiperiodic perturbations. For this purpose, we present a methodology based on the separatrix map to model the dynamics close to heteroclinic networks with quasiperiodic perturbations. Our methodology unifies two different approaches, one based on Melnikov integrals and the other one based on variational equations. We apply it to two models: first, to the Duffing equation, which comes from the perturbation of a Hamiltonian system and, second, to a heteroclinic attractor network for binocular rivalry, for which we develop a suitable method based on Melnikov integrals for non-Hamiltonian systems. In both models, the perturbed system shows chaotic behavior, while dominance times achieve good agreement with gamma distributions. Moreover, the separatrix map provides a new (discrete) model for bistable perception which, in addition, replaces the numerical integration of time-continuous models and, consequently, reduces the computational cost and avoids numerical instabilitiesPeer ReviewedPostprint (author's final draft

    Robustness and epistasis in mutation-selection models

    Full text link
    We investigate the fitness advantage associated with the robustness of a phenotype against deleterious mutations using deterministic mutation-selection models of quasispecies type equipped with a mesa shaped fitness landscape. We obtain analytic results for the robustness effect which become exact in the limit of infinite sequence length. Thereby, we are able to clarify a seeming contradiction between recent rigorous work and an earlier heuristic treatment based on a mapping to a Schr\"odinger equation. We exploit the quantum mechanical analogy to calculate a correction term for finite sequence lengths and verify our analytic results by numerical studies. In addition, we investigate the occurrence of an error threshold for a general class of epistatic landscape and show that diminishing epistasis is a necessary but not sufficient condition for error threshold behavior.Comment: 20 pages, 14 figure

    Networking Effects on Cooperation in Evolutionary Snowdrift Game

    Full text link
    The effects of networking on the extent of cooperation emerging in a competitive setting are studied. The evolutionary snowdrift game, which represents a realistic alternative to the well-known Prisoner's Dilemma, is studied in the Watts-Strogatz network that spans the regular, small-world, and random networks through random re-wiring. Over a wide range of payoffs, a re-wired network is found to suppress cooperation when compared with a well-mixed or fully connected system. Two extinction payoffs, that characterize the emergence of a homogeneous steady state, are identified. It is found that, unlike in the Prisoner's Dilemma, the standard deviation of the degree distribution is the dominant network property that governs the extinction payoffs.Comment: Changed conten

    Noise and Correlations in a Spatial Population Model with Cyclic Competition

    Get PDF
    Noise and spatial degrees of freedom characterize most ecosystems. Some aspects of their influence on the coevolution of populations with cyclic interspecies competition have been demonstrated in recent experiments [e.g. B. Kerr et al., Nature {\bf 418}, 171 (2002)]. To reach a better theoretical understanding of these phenomena, we consider a paradigmatic spatial model where three species exhibit cyclic dominance. Using an individual-based description, as well as stochastic partial differential and deterministic reaction-diffusion equations, we account for stochastic fluctuations and spatial diffusion at different levels, and show how fascinating patterns of entangled spirals emerge. We rationalize our analysis by computing the spatio-temporal correlation functions and provide analytical expressions for the front velocity and the wavelength of the propagating spiral waves.Comment: 4 pages of main text, 3 color figures + 2 pages of supplementary material (EPAPS Document). Final version for Physical Review Letter
    • …
    corecore