6 research outputs found

    A Note on "Stability of the Constant Cost Dynamic Lot Size Model" by K. Richter

    Get PDF
    In a paper by K. Richter the stability regions of the dynamic lot size model with constant cost parameters are analyzed. In particular, an algorithm is suggested to compute the stability region of a so-called generalized solution. In general this region is only a subregion of the stability region of the optimal solution. In this note we show that in a computational effort that is of the same order as the running time of Richter's algorithm, it is possible to partition the parameter space in stability regions such that every region corresponds to another optimal solution

    Sensitivity Analysis of the Economic Lot-Sizing Problem

    Get PDF
    In this paper we study sensitivity analysis of the uncapacitated single level economic lot-sizing problem, which was introduced by Wagner and Whitin about thirty years ago. In particular we are concerned with the computation of the maximal ranges in which the numerical problem parameters may vary individually, such that a solution already obtained remains optimal. Only recently it was discovered that faster algorithms than the Wagner-Whitin algorithm exist to solve the economic lot-sizing problem. Moreover, these algorithms reveal that the problem has more structure than was recognized so far. When performing the sensitivity analysis we exploit these newly obtained insights

    Polynomial Time Algorithms For Some Multi-Level Lot-Sizing Problems With Production Capacities

    Get PDF
    We consider a model for a serial supply chain in which production, inventory, and transportation decisions are integrated, in the presence of production capacities and for different transportation cost functions. The model we study is a generalization of the traditional single-item economic lot-sizing model, adding stationary production capacities at the manufacturer, as well as multiple intermediate storage levels (including the retailer level), and transportation between these levels. Allowing for general concave production costs and linear holding costs, we provide polynomialtime algorithms for the cases where the transportation costs are either linear, or are concave with a fixed-charge structure. In the latter case, we make the additional common and reasonable assumption that the variable transportation and inventory costs are such that holding inventories at higher levels in the supply chain is more attractive from a variable cost perspective. The running times of the algorithms are remarkably insensitive to the number of levels in the supply chain

    Routing Trains through railway stations: model formulation and algorithms

    Get PDF
    In this paper we consider the problem of routing trains through railway stations. This problem occurs as a subproblem in a project which the authors are carrying out in cooperation with the Dutch railways. The project involves the analysis of future infrastructural capacity requirements in the Dutch railway network, Part of this project is the automatic generation and evaluation of timetables. To generate a timetable a hierarchical approach is followed: at the upper level in the hierarchy a tentative timetable is generated, taking into account the specific scheduling problems of the trains at the railway stations at an aggregate level. At the lower level in the hierarchy it is checked whether the tentative timetable is feasible with respect to the safety rules and the connection requirements at the stations. To carry out this consistency cheek, detailed schedules for the trains at the railway yards have to be generated. In this paper we present a mathematical model formulation for this detailed scheduling problem, based on the Node Packing Problem (NPP). Furthermore, we describe a solution procedure for the problem, based on a branch-and-cut approach. The approach is tested in an empirical study with data from the station of Zwolle in The Netherlands

    Economic Lot-Sizing: an O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case

    No full text
    We consider the n-period economic lot sizing problem, where the cost coefficients are not restricted in sign. In their seminal paper, H. M. Wagner and T. M. Whitin proposed an O(n[sup 2]) algorithm for the special case of this problem, where the marginal production costs are equal in all periods and the unit holding costs are nonnegative. It is well known that their approach can also be used to solve the general problem, without affecting the complexity of the algorithm. In this paper, we present an algorithm to solve the economic lot sizing problem in O(n log n) time, and we show how the Wagner-Whitin case can even be solved in linear time. Our algorithm can easily be explained by a geometrical interpretation and the time bounds are obtained without the use of any complicated data structure. Furthermore, we show how Wagner and Whitin's and our algorithm are related to algorithms that solve the dual of the simple plant location formulation of the economic lot sizing problem
    corecore