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Abstract: In a paper by K. Richter the stability regions of the dynamic lot size model with constant cost 
parameters are analyzed. In particular, an algorithm is suggested to compute the stability region of a 
so-called generalized solution. In general this region is only a subregion of the stability region of the 
optimal solution. In this note we show that in a computational effort that is of the same order as the 
running time of Richter's algorithm, it is possible to partition the parameter space in stability regions such 
that every region corresponds to another optimal solution. 
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1. Introduction 

We consider the constant cost dynamic lot size 
problem with set-up cost c > 0, unit holding cost 
h > 0 and a planning horizon consisting of T 
periods. Richter (1987) has analyzed the stability 
region of this model, i.e., the following question 
was studied: given an optimal solution for the cost 
parameters c and h, for which other pairs of 
parameters (c ' ,  h ' )  is the solution still optimal? 
To answer this question, the notion of a gener- 
alized solutuion was introduced. A generalized 
solution can be viewed as a complete description 
of the output of the well-known dynamic pro- 
gramming algorithm of Wagner and Whitin (1958). 
The generalized solutions of two different pairs of 
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COSt parameters are equal if and only if the opti- 
mal solutions for the planning horizons consisting 
of periods 1 to t are equal for all t, 1 < t < T. It 
follows that two pairs (c, h) and (c' ,  h ' )  can have 
different generalized solutions, although they cor- 
respond to the same optimal solution. In other 
words, the stability region of an optimal solution 
is in general the union of stability regions of 
several generalized solutions. Richter has shown 
how one can obtain bounds, such that the gener- 
alized solution for (c, h) is a generalized solution 
for (c ' ,  h ' )  if and only if c ' /h '  lies within these 
bounds. This result implies that the stability re- 
gions of the generalized solutions are convex cones 
in R2+. Although it was not proven or stated 
explicitly, Richter assumed that the convexity 
property also holds for the stability regions of the 
optimal solutions, because to find these he only 
explores neighbouring stability regions of gener- 
alized solutions. The correctness of this approach 
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follows from Richter and VSr~s (1989a), where the 
'convex cone property '  is proven for an even more 
general case. 

Richter did not give much attention to the 
computational aspects of his method to compute 
the stability regions of the generalized solutions. 
His exposition suggests an algorithm that requires 
O(T 2) elementary operations. In fact, this al- 
gorithm was implemented by him in an interactive 
BASIC program. The running time of his method to 
determine the stability region of an optimal solu- 
tion is not directly clear, because this involves the 
computation of the stability regions of several 
generalized solutions. 

the fact that all operations of the algorithm must 
preserve linearity in the cost coefficients that are 
parameterized. Many well-known combinatorial 
algorithms possess this property. In particular, the 
linear time algorithm to solve the constant cost 
dynamic lot size problem is 'suitable' .  Therefore, 
it is possible to compute the stability region of an 
opimal solution in O(T 2) time. 

The result above also holds for the more gen- 
eral case where both the set-up costs and the unit 
holding costs are linear functions of a parameter 
X, i.e., 

c , = a  t+b ,X  and h , = f t + g , ? ~  

for t = 1 . . . . .  T, 

2. Computing stability regions of optimal solutions 

In a recent paper by Wagelmans, Van Hoesel 
and Kolen (1991) it is shown that the dynamic lot 
size problem can be solved in O(T log T)  time 
and that some special cases can even be solved in 
linear time. Among these special cases is the prob- 
lem originally considered in Wagner and Whitin 
(1958), and therefore also the constant cost model. 
We shall first use this result to show that it is 
possible to compute the stability region of an 
optimal solution in O(T 2) time. Subsequently we 
shall show that even a stronger result holds. 

Because of the 'convex cone property '  we can 
normalize the cost coefficients by taking h = 1. 
This means that we are in fact considering a 
parametric version of the constant cost dynamic 
lot-sizing with one parameter that appears linearly 
in the objective function. This problem has also 
been discussed in Richter and V~rSs (1989b) and 
a related problem is analyzed in Richter (1986). 
However, in both cases no explicit normalization 
of the cost coefficients is made and the analysis is 
again based on generalized solutions. 

The question we want to solve now is: given an 
optimal solution for set-up cost c, compute the 
values Clo w and Cup such that the solution is opti- 
mal if and only if the set-up cost belongs to the 
interval [clo w, Cup ]. It has been shown in Gusfield 
(1983) that if one has the disposal of a 'suitable'  
algorithm to solve the non-parametric problem 
that runs in O(A) time, then this question can be 
solved in O(A:)  time. The term 'suitable'  refers to 

and X is restricted to the region for which all cost 
coefficients are non-negative. Given a value for ?~ 
and a corresponding optimal solution, one can 
compute the interval [~l .... ?~up] that contains 
exactly all values of ~. for which the solution is 
optimal in O(T 2) time. In this general case it is 
not easy to give a good estimate of the computa- 
tional effort needed to compute all stability re- 
gions of optimal solutions, because it is not di- 
rectly clear how many different solutions can be- 
come optimal if ?~ varies over its feasible region. 
However, in the case of the constant cost model 
this question is easy to answer. 

It is well-known that if one considers the opti- 
mal value of the problem as a function of the 
changing parameter,  i.c. c, then this function is 
piecewise linear and concave. If the slope of the 
function changes then another solution becomes 
optimal. In our case the slope of a linear part  of 
the function is exactly equal to the number of 
set-ups in the corresponding solution. Because of 
the concavity of the function this number is non- 
increasing for increasing c. It follows that the 
function consists of at most T linear parts. There 
exists a simple method that is often attributed to 
Eisner and Severance (1976) to compute this func- 
tion and the optimal solutions. If the non-para- 
metric problem can be solved in O(A) time and 
the function has O(B)  pieces, then the computa- 
tional effort of this method can be bounded by 
O(AB) elementary operations (see Gusfield, 1980, 
for a detailed description of an implementation). 
This means that in our case we can determine the 
function in O(T 2) time. 
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3. Conclusion 

We have shown that it is possible to compute 
the stability regions for all possible optimal solu- 
tions in O ( T  2) time, i.e., in the same computa- 
tional effort that Richter used for the determina- 
tion of only a part of the stability region of one 
optimal solution. 
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