18 research outputs found

    Fish Passage in Georgia: Planning for the Future

    Get PDF
    Proceedings of the 2013 Georgia Water Resources Conference, April 10-11, 2013, Athens, Georgia.In 14 major watersheds and thousands of miles of rivers, Georgia’s waterways provide some of the highest levels of aquatic biodiversity in the United States. Hydrologic disconnection by dams, roads, water diversions, and other barriers have led to local declines in both migratory and resident fishes. To counteract these trends, numerous organizations and stakeholders have invested in fish passage structures and dam removal. Techniques for prioritizing barrier improvement, measuring passage efficacy, and designing passage structures are rapidly developing in both research and practice. We review the status of fish passage improvement in the state of Georgia as it relates to two key topics. First, what methods exist (or are being developed) to prioritize barrier improvement? Second, what lessons have been learned from recent fish passage and dam removal projects? We address these questions by way of example projects conducted by a variety of agencies and entities. We conclude by summarizing some emerging challenges and opportunities for future research in fish passage improvement.Sponsored by: Georgia Environmental Protection Division; U.S. Department of Agriculture, Natural Resources Conservation Service; Georgia Institute of Technology, Georgia Water Resources Institute; The University of Georgia, Water Resources Faculty.This book was published by Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia 30602-2152. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the Georgia Water Research Institute as authorized by the Water Research Institutes Authorization Act of 1990 (P.L. 101-307) or the other conference sponsors

    Bioprocess applications of a Sindbis virus-based temperature-inducible expression system.

    No full text
    The production and study of toxic proteins requires inducible expression systems with low basal level expression and high inducibility. Here, we describe bioprocess applications of the pCytTS temperature-regulatable Sindbis virus replicon-based expression system. We used green fluorescent protein as a marker protein to optimize the selection of stable transfected clones with increased expression levels. Using the optimized protocol, clones were constructed that produced the growth-inhibiting, anti-viral protein interferon beta (beta-IFN). Selected clones were analyzed for temperature-dependent beta-IFN production in adherent and suspension cultures in serum free medium. Specific expression levels were around 1.0 x 10(5) IU/10(6) cells/day (0.5 microg/10(6) cells/day) in suspension cultures and over 1.5 x 10(6) IU/mL/day (7.5 microg/mL/day) in hollow fiber reactors using adherent cells. Hexahistidine-tagged beta-IFN purified from T-flask cultures was highly glycosylated and showed high specific activity. beta-IFN mRNA amplified by the viral replicase for 10 days did not show an accumulation of mutations. These data suggest the applicability of the pCytTS-inducible expression system for the production of high-quality glycoproteins in different reactors

    Bioprocess applications of a Sindbis virus-based temperature-inducible expression system.

    No full text
    The production and study of toxic proteins requires inducible expression systems with low basal level expression and high inducibility. Here, we describe bioprocess applications of the pCytTS temperature-regulatable Sindbis virus replicon-based expression system. We used green fluorescent protein as a marker protein to optimize the selection of stable transfected clones with increased expression levels. Using the optimized protocol, clones were constructed that produced the growth-inhibiting, anti-viral protein interferon beta (beta-IFN). Selected clones were analyzed for temperature-dependent beta-IFN production in adherent and suspension cultures in serum free medium. Specific expression levels were around 1.0 x 10(5) IU/10(6) cells/day (0.5 microg/10(6) cells/day) in suspension cultures and over 1.5 x 10(6) IU/mL/day (7.5 microg/mL/day) in hollow fiber reactors using adherent cells. Hexahistidine-tagged beta-IFN purified from T-flask cultures was highly glycosylated and showed high specific activity. beta-IFN mRNA amplified by the viral replicase for 10 days did not show an accumulation of mutations. These data suggest the applicability of the pCytTS-inducible expression system for the production of high-quality glycoproteins in different reactors

    Racemization-free synthesis of Nα-2-thiophenoyl-phenylalanine-2-morpholinoanilide enantiomers and their antimycobacterial activity

    No full text
    Nα-2-thiophenoyl-d-phenylalanine-2-morpholinoanilide (MMV688845, IUPAC: N-(1-((2-morpholinophenyl)amino)-1-oxo-3-phenylpropan-2-yl)thiophene-2-carboxamide) from the Pathogen BoxŸ library (Medicines for Malaria Ventures, MMV) is a promising lead compound for antimycobacterial drug development. Two straightforward synthetic routes to the title compound starting from phenylalanine or its Boc-protected derivative are reported. Employing Boc-phenylalanine as starting material and the T3PŸ and PyBOPŸ amide coupling reagents enables racemization-free synthesis, avoiding the need for subsequent separation of the enantiomers. The crystal structure of the racemic counterpart gives insight into the molecular structure and hydrogen bonding interactions in the solid state. The R-enantiomer of the title compound (derived from d-phenylalanine) exhibits activity against non-pathogenic and pathogenic mycobacterial strains, whereas the S-enantiomer is inactive. Neither of the enantiomers and the racemate of the title compound shows cytotoxicity against various mammalian cells

    A Term-Graph Syntax for Algebras over Multisets

    No full text
    Earlier papers argued that term graphs play for the specification of relation-based algebras the same role that standard terms play for total algebras. The present contribution enforces the claim by showing that term graphs are a sound and complete representation for multiset algebras, i.e., algebras whose operators are interpreted over multisets

    Drugit: Crowd-sourcing molecular design of non-peptidic VHL binders

    No full text
    Given the role of human intuition in current drug design efforts, crowd-sourced \u27citizen scientist\u27 games have the potential to greatly expand the pool of potential drug designers. Here, we introduce ‘Drugit\u27, the small molecule design mode of the online ‘citizen science’ game Foldit. We demonstrate its utility for design with a use case to identify novel binders to the von Hippel Lindau E3 ligase. Several thousand molecule suggestions were obtained from players in a series of 10 puzzle rounds. The proposed molecules were then evaluated by in silico methods and by an expert panel and selected candidates were synthesized and tested. One of these molecules, designed by a player, showed dose-dependent shift perturbations in protein-observed NMR experiments. The co-crystal structure in complex with the E3 ligase revealed that the observed binding mode matched in major parts the player’s original idea. The completion of one full design cycle is a proof of concept for the Drugit approach and highlights the potential of involving citizen scientists in early drug discovery
    corecore