83 research outputs found

    How T cells talk to the neighborhood: the spatiotemporal dynamics of T cell-derived cytokines in cancer

    Get PDF
    To communicate with one another, cells in the body release signaling molecules called cytokines. The effects of these cytokines have been demonstrated to be extremely important for a successful immune response, but surprisingly little is known about how cytokines act in space and time. In this thesis, I describe the development of a set of new techniques that allow the efficient identification of cells that have encountered cytokine signals. Subsequently, I investigate the spreading of cytokines such as IFNγ and TNFα in in vivo cancer models and describe how activated cytotoxic T cells, which form a key compartment of our immune system, can profoundly modify the tumor microenvironment by the generation of widespread cytokine gradients.Boehringer Ingelheim Fonds PhD Fellowship (to M.E.Hoekstra) Nederlands Kanker Insituut (to Ton Schumacher) Oncode Institute (to Ton Schumacher) ERC AdG SENSIT grant (to Ton Schumacher)LUMC / Geneeskund

    Measuring the Reduced Shear

    Full text link
    Neglecting the second order corrections in weak lensing measurements can lead to a few percent uncertainties on cosmic shears, and becomes more important for cluster lensing mass reconstructions. Existing methods which claim to measure the reduced shears are not necessarily accurate to the second order when a point spread function (PSF) is present. We show that the method of Zhang (2008) exactly measures the reduced shears at the second order level in the presence of PSF. A simple theorem is provided for further confirming our calculation, and for judging the accuracy of any shear measurement method at the second order based on its properties at the first order. The method of Zhang (2008) is well defined mathematically. It does not require assumptions on the morphologies of galaxies and the PSF. To reach a sub-percent level accuracy, the CCD pixel size is required to be not larger than 1/3 of the Full Width at Half Maximum (FWHM) of the PSF. Using a large ensemble (> 10^7) of mock galaxies of unrestricted morphologies, we find that contaminations to the shear signals from the noise of background photons can be removed in a well defined way because they are not correlated with the source shapes. The residual shear measurement errors due to background noise are consistent with zero at the sub-percent level even when the amplitude of such noise reaches about 1/10 of the source flux within the half-light radius of the source. This limit can in principle be extended further with a larger galaxy ensemble in our simulations. On the other hand, the source Poisson noise remains to be a cause of systematic errors. For a sub-percent level accuracy, our method requires the amplitude of the source Poisson noise to be less than 1/80 ~ 1/100 of the source flux within the half-light radius of the source, corresponding to collecting roughly 10^4 source photons.Comment: 18 pages, 3 figures, 4 tables, minor changes from the previous versio

    What endocrinologists can do to prevent cardiovascular complications in adults with Prader-Willi syndrome:Lessons from a case series

    Get PDF
    Context: Prader-Willi syndrome (PWS) is a complex rare genetic syndrome. Mortality in patients with PWS is 3% per year. In nearly half of the patients, the cause of death is of cardiopulmonary origin. Prevention, diagnosis and treatment of cardiovascular (CV) disease in PWS adults is complicated by the behavioral phenotype, reduced ability to express physical complaints, high pain threshold and obesity. Objective: To describe the challenges in prevention, diagnosis and treatment of CV disease in PWS adults, in order to increase awareness and improve medical care. Methods: Retrospective study of medical records of adults visiting the Dutch PWS reference center. Results: We describe the challenges encountered during diagnosis and treatment of four PWS adults with heart failure. All had pre-existent peripheral edema. CV risk factors in these patients were obesity (n=4), type 2 diabetes mellitus (n=2), hypertension (n=2), hypogonadism (n=3) and sleep apnea (n=2). Remarkably, all patients were younger than 40 years during their first cardiac decompensation. All patients presented with progressive shortness of breath and/or orthopnea and progressive pitting edema. In 117 controls with PWS without CV problems, 31% had leg edema. Conclusion: Diagnosing CV problems in PWS adults is challenging. Peripheral edema is common in PWS adults without CV morbidity, which makes edema in general a poor marker for heart failure. However, when edema is of the pitting kind and progressive, this is a strong predictor of cardiac decompensation. We provide practical recommendations for diagnosing and treating CV problems in this vulnerable patient population.</p

    The impact of CYP2C19 genotype on phenoconversion by concomitant medication

    Get PDF
    Introduction: Pharmacogenetics-informed drug prescribing is increasingly applied in clinical practice. Typically, drug metabolizing phenotypes are determined based on genetic test results, whereupon dosage or drugs are adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication can however cause mismatches between predicted and observed phenotypes (phenoconversion). Here we investigated the impact of CYP2C19 genotype on the outcome of CYP2C19-dependent DDIs in human liver microsomes.Methods: Liver samples from 40 patients were included, and genotyped for CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal fractions was used as proxy for CYP2C19 activity, and concordance between genotype-predicted and observed CYP2C19 phenotype was examined. Individual microsomes were subsequently co-exposed to fluvoxamine, voriconazole, omeprazole or pantoprazole to simulate DDIs.Results: Maximal CYP2C19 activity (Vmax) in genotype-predicted intermediate metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and ultrarapid metabolizers (UMs; *17/*17) was not different from Vmax of predicted normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors exhibited Vmax rates ∼9% of NMs, confirming the genotype-predicted poor metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40% concordance between genetically-predicted CYP2C19 phenotypes and measured phenotypes, indicating substantial phenoconversion. Eight patients (20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their CYP2C19 genotype, of which six could be linked to the presence of diabetes or liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by omeprazole (−37% ± 8%), voriconazole (−59% ± 4%) and fluvoxamine (−85% ± 2%), but not by pantoprazole (−2 ± 4%). The strength of CYP2C19 inhibitors remained unaffected by CYP2C19 genotype, as similar percental declines in CYP2C19 activity and comparable metabolism-dependent inhibitory constants (Kinact/KI) of omeprazole were observed between CYP2C19 genotypes. However, the consequences of CYP2C19 inhibitor-mediated phenoconversion were different between CYP2C19 genotypes. In example, voriconazole converted 50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors. Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%).Conclusion: This study suggests that the differential outcome of CYP2C19-mediated DDIs between genotypes are primarily dictated by basal CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely also depends on disease-related factors.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    The impact of CYP2C19 genotype on phenoconversion by concomitant medication

    Get PDF
    Introduction: Pharmacogenetics-informed drug prescribing is increasingly applied in clinical practice. Typically, drug metabolizing phenotypes are determined based on genetic test results, whereupon dosage or drugs are adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication can however cause mismatches between predicted and observed phenotypes (phenoconversion). Here we investigated the impact of CYP2C19 genotype on the outcome of CYP2C19-dependent DDIs in human liver microsomes. Methods: Liver samples from 40 patients were included, and genotyped for CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal fractions was used as proxy for CYP2C19 activity, and concordance between genotype-predicted and observed CYP2C19 phenotype was examined. Individual microsomes were subsequently co-exposed to fluvoxamine, voriconazole, omeprazole or pantoprazole to simulate DDIs. Results: Maximal CYP2C19 activity (V-max) in genotype-predicted intermediate metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and ultrarapid metabolizers (UMs; *17/*17) was not different from V-max of predicted normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors exhibited V-max rates similar to 9% of NMs, confirming the genotype-predicted poor metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40% concordance between genetically-predicted CYP2C19 phenotypes and measured phenotypes, indicating substantial phenoconversion. Eight patients (20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their CYP2C19 genotype, of which six could be linked to the presence of diabetes or liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by omeprazole (-37% +/- 8%), voriconazole (-59% +/- 4%) and fluvoxamine (-85% +/- 2%), but not by pantoprazole (-2 +/- 4%). The strength of CYP2C19 inhibitors remained unaffected by CYP2C19 genotype, as similar percental declines in CYP2C19 activity and comparable metabolism-dependent inhibitory constants (K-inact/K-I) of omeprazole were observed between CYP2C19 genotypes. However, the consequences of CYP2C19 inhibitor-mediated phenoconversion were different between CYP2C19 genotypes. In example, voriconazole converted 50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors. Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%). Conclusion: This study suggests that the differential outcome of CYP2C19-mediated DDIs between genotypes are primarily dictated by basal CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely also depends on disease-related factors.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Apolipoprotein A1 deficiency in mice primes bone marrow stem cells for T cell lymphopoiesis

    Get PDF
    The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study, we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. We found that HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin-Sca-1+Kit+ (LSK) bone marrow stem cell population and lymphoid-primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1-knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients. In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice.Biopharmaceutic
    • …
    corecore