17 research outputs found

    Design of a Tennis-Specific Agility Test (TAT) for Monitoring Tennis Players

    Get PDF
    Agility is an important ability for tennis players. To be successful in the rallies, players must perform rapid, multidirectional movements in response to the ball and/or the position of the opponent. For a test to be representative in monitoring agility performance, it should capture a combination of the physical and cognitive agility performance. Considering that literature reports no reliable and valid sport-specific agility test for tennis, the aim of this article was to design and evaluate the measurement properties of a Tennis-specific Agility Test (TAT). To evaluate the TAT, test-retest reliability, concurrent validity, and feasibility were assessed. For reproducibility, a two-way mixed ANOVA was performed. Concurrent validity was assessed using Pearson correlations. A total of 69 tennis players participated in this study of whom 16 competed at the international (22 ± 3.7 years, playing level (Dynamic Rating System): .8 ± .3), 43 at the national (14 ± 1.4 years, playing level: 4.6 ± 1.4), and 10 at the regional level (15 ± 0.8 years, playing level: 4.9 ± 1.1). Test-retest reliability was found to be moderate with an Intra-Class Correlation coefficient (ICC) of .74 (p < .01) and a percentual minimal detectable change (%MDC) of 6.2%. Concurrent validity was found to be moderate by comparison with a recognised agility test, the Spider Drill, which measures only the physical component (.70; p < .01), and by comparison with tennis performance for both boys (r = .67; p < .01) and girls (r = .72; p < .01). The feasibility was high with short time for preparation (five to ten minutes) and time per participant (<5 minutes). In conclusion, the TAT shows promising results for assessing sport-specific agility performance in tennis making it likely to be used in the practical setting

    The effect of a novel square-profile hand rim on propulsion technique of wheelchair tennis players

    Get PDF
    The purpose of this study was to investigate the effect of a square-profile hand rim (SPR) on propulsion technique of wheelchair tennis players. Eight experienced wheelchair tennis players performed two sets of three submaximal exercise tests and six sprint tests on a wheelchair ergometer, once with a regular rim (RR) and once with a SPR. Torque and velocity were measured continuously and power output and timing variables were calculated. No significant differences were found in propulsion technique between the RR and SPR during the submaximal tests. When sprinting with the racket, the SPR showed a significantly lower overall speed (9.1 vs. 9.8 m s(-1)), maximal speed (10.5 vs. 11.4 m s(-1)), and maximal acceleration (18.6 vs. 10.9 m s(-2)). The SPR does not seem to improve the propulsion technique when propelling a wheelchair with a tennis racket in the hand. However, the results gave input for new hand rim designs for wheelchair tennis

    Six inertial measurement unit-based components describe wheelchair mobility performance during wheelchair tennis matches

    Get PDF
    The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.</p

    Wheelchair mobility performance of elite wheelchair tennis players during four field tests: Inter-trial reliability and construct validity

    Get PDF
    The purpose of the current study was to assess the inter-trial reliability and construct validity (talented juniors vs. international adult players) of four wheelchair tennis field tests using inertial measurement units (IMUs). Twenty-one elite wheelchair tennis players completed four tests, which evaluate the sprinting and manoeuvrability abilities in wheelchair tennis. During all tests 3 IMUs were attached to both wheels and the frame of the athlete's wheelchair. The IMUs enabled analysis of individual test dynamic characteristics, i.e. the linear/rotational velocity and acceleration data, as well as detected pushes. All tests showed high ICCs (0.95-0.99) for the inter-trial reliability for the IMU-based end times and also the construct validity was good, i.e. talented juniors could be discriminated from international adults. Also, velocities and accelerations during the tests could be consistently visualized, meaning that differences in test performance among participants could be designated. Within the experimental context, the field tests could be regarded as reliable and valid. With the use of IMUs it is possible to verify more detailed performance characteristics, visualize the test execution, as well as differentiate between a talented junior and international adult group and within individuals over time

    Oxygen drives hepatocyte differentiation and phenotype stability in liver cell lines

    No full text
    The in vitro generation of terminally differentiated hepatocytes is an unmet need. We investigated the contribution of oxygen concentration to differentiation in human liver cell lines HepaRG and C3A. HepaRG cells were cultured under hypoxia (5%O2), normoxia (21%O2) or hyperoxia (40%O2). Cultures were analysed for hepatic functions, gene transcript levels, and protein expression of albumin, hepatic transcription factor CEBPα, hepatic progenitor marker SOX9, and hypoxia inducible factor (HIF)1α. C3A cells were analysed after exposure to normoxia or hyperoxia. In hyperoxic HepaRG cultures, urea cycle activity, bile acid synthesis, CytochromeP450 3A4 (CYP3A4) activity and ammonia elimination were 165-266% increased. These effects were reproduced in C3A cells. Whole transcriptome analysis of HepaRG cells revealed that 240 (of 23.223) probes were differentially expressed under hyperoxia, with an overrepresentation of genes involved in hepatic differentiation, metabolism and extracellular signalling. Under hypoxia, CYP3A4 activity and ammonia elimination were inhibited almost completely and 5/5 tested hepatic genes and 2/3 tested hepatic transcription factor genes were downregulated. Protein expression of SOX9 and HIF1α was strongly positive in hypoxic cultures, variable in normoxic cultures and predominantly negative in hyperoxic cultures. Conversely, albumin and CEBPα expression were highest in hyperoxic cultures. HepaRG cells that were serially passaged under hypoxia maintained their capacity to differentiate under normoxia, in contrast to cells passaged under normoxia. Hyperoxia increases hepatocyte differentiation in HepaRG and C3A cells. In contrast, hypoxia maintains stem cell characteristics and inhibits hepatic differentiation of HepaRG cells, possibly through the activity of HIF1

    Genetic Architecture of Hippocampal Subfield Volumes:Shared and Specific Influences

    No full text
    The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are known to be differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often found to be impaired in individuals with brain disorders associated with reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given these structural and functional differences, we sought to characterize the subfields’ shared and specific genetic architecture

    Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes

    No full text
    The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer’s disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields’ genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10–16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies

    Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes

    No full text
    The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer’s disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields’ genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10^–16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies
    corecore