113 research outputs found
The perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons
We consider the isotropic perimeter generating functions of three-choice,
imperfect, and 1-punctured staircase polygons, whose 8th order linear Fuchsian
ODEs are previously known. We derive simple relationships between the three
generating functions, and show that all three generating functions are joint
solutions of a common 12th order Fuchsian linear ODE. We find that the 8th
order differential operators can each be rewritten as a direct sum of a direct
product, with operators no larger than 3rd order. We give closed-form
expressions for all the solutions of these operators in terms of
hypergeometric functions with rational and algebraic arguments. The solutions
of these linear differential operators can in fact be expressed in terms of two
modular forms, since these hypergeometric functions can be expressed
with two, rational or algebraic, pullbacks.Comment: 28 page
The importance of the Ising model
Understanding the relationship which integrable (solvable) models, all of
which possess very special symmetry properties, have with the generic
non-integrable models that are used to describe real experiments, which do not
have the symmetry properties, is one of the most fundamental open questions in
both statistical mechanics and quantum field theory. The importance of the
two-dimensional Ising model in a magnetic field is that it is the simplest
system where this relationship may be concretely studied. We here review the
advances made in this study, and concentrate on the magnetic susceptibility
which has revealed an unexpected natural boundary phenomenon. When this is
combined with the Fermionic representations of conformal characters, it is
suggested that the scaling theory, which smoothly connects the lattice with the
correlation length scale, may be incomplete for .Comment: 33 page
Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations
We give the exact expressions of the partial susceptibilities
and for the diagonal susceptibility of the Ising model in terms
of modular forms and Calabi-Yau ODEs, and more specifically,
and hypergeometric functions. By solving the connection problems we
analytically compute the behavior at all finite singular points for
and . We also give new results for .
We see in particular, the emergence of a remarkable order-six operator, which
is such that its symmetric square has a rational solution. These new exact
results indicate that the linear differential operators occurring in the
-fold integrals of the Ising model are not only "Derived from Geometry"
(globally nilpotent), but actually correspond to "Special Geometry"
(homomorphic to their formal adjoint). This raises the question of seeing if
these "special geometry" Ising-operators, are "special" ones, reducing, in fact
systematically, to (selected, k-balanced, ...) hypergeometric
functions, or correspond to the more general solutions of Calabi-Yau equations.Comment: 35 page
The parameter at three loops and elliptic integrals
We describe the analytic calculation of the master integrals required to
compute the two-mass three-loop corrections to the parameter. In
particular, we present the calculation of the master integrals for which the
corresponding differential equations do not factorize to first order. The
homogeneous solutions to these differential equations are obtained in terms of
hypergeometric functions at rational argument. These hypergeometric functions
can further be mapped to complete elliptic integrals, and the inhomogeneous
solutions are expressed in terms of a new class of integrals of combined
iterative non-iterative nature.Comment: 14 pages Latex, 7 figures, to appear in the Proceedings of "Loops and
Legs in Quantum Field Theory - LL 2018", 29 April - 4 May 2018, Po
Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams
We calculate 3-loop master integrals for heavy quark correlators and the
3-loop QCD corrections to the -parameter. They obey non-factorizing
differential equations of second order with more than three singularities,
which cannot be factorized in Mellin- space either. The solution of the
homogeneous equations is possible in terms of convergent close integer power
series as Gau\ss{} hypergeometric functions at rational argument. In
some cases, integrals of this type can be mapped to complete elliptic integrals
at rational argument. This class of functions appears to be the next one
arising in the calculation of more complicated Feynman integrals following the
harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic
polylogarithms, square-root valued iterated integrals, and combinations
thereof, which appear in simpler cases. The inhomogeneous solution of the
corresponding differential equations can be given in terms of iterative
integrals, where the new innermost letter itself is not an iterative integral.
A new class of iterative integrals is introduced containing letters in which
(multiple) definite integrals appear as factors. For the elliptic case, we also
derive the solution in terms of integrals over modular functions and also
modular forms, using -product and series representations implied by Jacobi's
functions and Dedekind's -function. The corresponding
representations can be traced back to polynomials out of Lambert--Eisenstein
series, having representations also as elliptic polylogarithms, a -factorial
, logarithms and polylogarithms of and their -integrals.
Due to the specific form of the physical variable for different
processes, different representations do usually appear. Numerical results are
also presented.Comment: 68 pages LATEX, 10 Figure
Iterative and Iterative-Noniterative Integral Solutions in 3-Loop Massive QCD Calculations
Various of the single scale quantities in massless and massive QCD up to
3-loop order can be expressed by iterative integrals over certain classes of
alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples
are the anomalous dimensions to 3-loop order, the massless Wilson coefficients
and also different massive operator matrix elements. Starting at 3-loop order,
however, also other letters appear in the case of massive operator matrix
elements, the so called iterative non-iterative integrals, which are related to
solutions based on complete elliptic integrals or any other special function
with an integral representation that is definite but not a Volterra-type
integral. After outlining the formalism leading to iterative non-iterative
integrals,we present examples for both of these cases with the 3-loop anomalous
dimension and the structure of the principle solution in
the iterative non-interative case of the 3-loop QCD corrections to the
-parameter.Comment: 13 pages LATEX, 2 Figure
Decidability of Univariate Real Algebra with Predicates for Rational and Integer Powers
We prove decidability of univariate real algebra extended with predicates for
rational and integer powers, i.e., and . Our decision procedure combines computation over real algebraic
cells with the rational root theorem and witness construction via algebraic
number density arguments.Comment: To appear in CADE-25: 25th International Conference on Automated
Deduction, 2015. Proceedings to be published by Springer-Verla
- …