113 research outputs found

    The perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons

    Full text link
    We consider the isotropic perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons, whose 8th order linear Fuchsian ODEs are previously known. We derive simple relationships between the three generating functions, and show that all three generating functions are joint solutions of a common 12th order Fuchsian linear ODE. We find that the 8th order differential operators can each be rewritten as a direct sum of a direct product, with operators no larger than 3rd order. We give closed-form expressions for all the solutions of these operators in terms of 2F1_2F_1 hypergeometric functions with rational and algebraic arguments. The solutions of these linear differential operators can in fact be expressed in terms of two modular forms, since these 2F1_2F_1 hypergeometric functions can be expressed with two, rational or algebraic, pullbacks.Comment: 28 page

    The importance of the Ising model

    Full text link
    Understanding the relationship which integrable (solvable) models, all of which possess very special symmetry properties, have with the generic non-integrable models that are used to describe real experiments, which do not have the symmetry properties, is one of the most fundamental open questions in both statistical mechanics and quantum field theory. The importance of the two-dimensional Ising model in a magnetic field is that it is the simplest system where this relationship may be concretely studied. We here review the advances made in this study, and concentrate on the magnetic susceptibility which has revealed an unexpected natural boundary phenomenon. When this is combined with the Fermionic representations of conformal characters, it is suggested that the scaling theory, which smoothly connects the lattice with the correlation length scale, may be incomplete for H0H \neq 0.Comment: 33 page

    Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations

    Full text link
    We give the exact expressions of the partial susceptibilities χd(3)\chi^{(3)}_d and χd(4)\chi^{(4)}_d for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, 3F2([1/3,2/3,3/2],[1,1];z)_3F_2([1/3,2/3,3/2],\, [1,1];\, z) and 4F3([1/2,1/2,1/2,1/2],[1,1,1];z)_4F_3([1/2,1/2,1/2,1/2],\, [1,1,1]; \, z) hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for χd(3)\chi^{(3)}_d and χd(4)\chi^{(4)}_d. We also give new results for χd(5)\chi^{(5)}_d. We see in particular, the emergence of a remarkable order-six operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the nn-fold integrals of the Ising model are not only "Derived from Geometry" (globally nilpotent), but actually correspond to "Special Geometry" (homomorphic to their formal adjoint). This raises the question of seeing if these "special geometry" Ising-operators, are "special" ones, reducing, in fact systematically, to (selected, k-balanced, ...) q+1Fq_{q+1}F_q hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations.Comment: 35 page

    The ρ\rho parameter at three loops and elliptic integrals

    Full text link
    We describe the analytic calculation of the master integrals required to compute the two-mass three-loop corrections to the ρ\rho parameter. In particular, we present the calculation of the master integrals for which the corresponding differential equations do not factorize to first order. The homogeneous solutions to these differential equations are obtained in terms of hypergeometric functions at rational argument. These hypergeometric functions can further be mapped to complete elliptic integrals, and the inhomogeneous solutions are expressed in terms of a new class of integrals of combined iterative non-iterative nature.Comment: 14 pages Latex, 7 figures, to appear in the Proceedings of "Loops and Legs in Quantum Field Theory - LL 2018", 29 April - 4 May 2018, Po

    Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams

    Full text link
    We calculate 3-loop master integrals for heavy quark correlators and the 3-loop QCD corrections to the ρ\rho-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-NN space either. The solution of the homogeneous equations is possible in terms of convergent close integer power series as 2F1_2F_1 Gau\ss{} hypergeometric functions at rational argument. In some cases, integrals of this type can be mapped to complete elliptic integrals at rational argument. This class of functions appears to be the next one arising in the calculation of more complicated Feynman integrals following the harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic polylogarithms, square-root valued iterated integrals, and combinations thereof, which appear in simpler cases. The inhomogeneous solution of the corresponding differential equations can be given in terms of iterative integrals, where the new innermost letter itself is not an iterative integral. A new class of iterative integrals is introduced containing letters in which (multiple) definite integrals appear as factors. For the elliptic case, we also derive the solution in terms of integrals over modular functions and also modular forms, using qq-product and series representations implied by Jacobi's ϑi\vartheta_i functions and Dedekind's η\eta-function. The corresponding representations can be traced back to polynomials out of Lambert--Eisenstein series, having representations also as elliptic polylogarithms, a qq-factorial 1/ηk(τ)1/\eta^k(\tau), logarithms and polylogarithms of qq and their qq-integrals. Due to the specific form of the physical variable x(q)x(q) for different processes, different representations do usually appear. Numerical results are also presented.Comment: 68 pages LATEX, 10 Figure

    Iterative and Iterative-Noniterative Integral Solutions in 3-Loop Massive QCD Calculations

    Full text link
    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γqg(2)\gamma_{qg}^{(2)} and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ\rho-parameter.Comment: 13 pages LATEX, 2 Figure

    Decidability of Univariate Real Algebra with Predicates for Rational and Integer Powers

    Full text link
    We prove decidability of univariate real algebra extended with predicates for rational and integer powers, i.e., (xnQ)(x^n \in \mathbb{Q}) and (xnZ)(x^n \in \mathbb{Z}). Our decision procedure combines computation over real algebraic cells with the rational root theorem and witness construction via algebraic number density arguments.Comment: To appear in CADE-25: 25th International Conference on Automated Deduction, 2015. Proceedings to be published by Springer-Verla
    corecore